DOI QR코드

DOI QR Code

마이크로/나노 비파괴평가 기술(I): 표면 및 표면직하 검사

Review of Micro/Nano Nondestructive Evaluation Technique (I): Surface and Subsurface Investigation

  • 김정석 (서울과학기술대학교 기계공학과) ;
  • 박익근 (서울과학기술대학교 기계공학과)
  • Kim, Chung-Seok (Mechanical engineering, Seoul National University of Science and Technology) ;
  • Park, Ik-Keun (Mechanical engineering, Seoul National University of Science and Technology)
  • 투고 : 2012.03.02
  • 심사 : 2012.04.13
  • 발행 : 2012.04.30

초록

본 논문은 널리 사용되고 있는 표면 미세조직 검사 기술과 표면 및 표면직하의 평가가 가능한 마이크로/나노 비파괴평가 기술을 소개한다. 일반적으로 재료 표면에서의 마이크로/나노 결함과 조직 상태는 벌크재료의 기계적, 물리적, 화학적 특성에 크게 영향을 주게 된다. 표면 미세조직 검사 기술은 이러한 재료의 결함과 조직특성을 신뢰도 높게 평가하는 기술이다. 각 검사기술의 원리와 특징, 응용분야와 개발 등을 소개하였다. 따라서 비파괴산업에서 마이크로/나노 비파괴평가의 적용과 기술 개발이 폭넓게 가능할 것으로 판단된다.

The present paper reviews the widely used surface microstructural investigation technique and micro/nano nondestructive evaluation(NDE) technique which is able to evaluate the surface and subsurface. In general, the micro/nano defects and microstructural state of surface have great influence on the mechanical, physical, and chemical properties of bulk materials. The investigation technique of surface microstructure is possible to evaluate the defects and microstructural state with high reliability. The various applications and developments of each inspection technique have been introduced. Consequently, it is thought that the technique developments and applications of micro/nano NDE in nondestructive industries are extensively possible hereafter.

키워드

참고문헌

  1. G. E. Dieter, "Mechanical Metallurgy," 3rd Ed. McGrawHill, New York, USA (1988)
  2. J. C. M. Li, "Microstructure and Properties of Materials," Vol. 2, World Scientific, Singaopre (2000)
  3. M. Evily, "Fatigue and Microstructure," American Society for Metals, Metals Park, Ohio (1978)
  4. K. Goebbels, "Materials Characterization for Process Control and Product Conformity," CRC Press, Florida, USA (1994)
  5. T. S. Park, D. R. Kwak, I. K. Park, C. S. Kim and K. Y. Jhang, "Evaluation of elastic properties and analysis of contact resonance frequency of cantilever for ultrasonic AFM," Journal of the Korean Society for Nondestructive Testing, Vol. 31, No. 2. pp. 174-180 (2011)
  6. C. S. Kim, Y. K. Kim, I. K. Park and S. I. Kwun, "Characterization of residual stress in shot peened Al 7075 alloy using surface acoustic wave," Journal of the Korean Society for Nondestructive Testing, Vol. 26, No. 5. pp. 291-296 (2006)
  7. C. S. Kim, T. S. Park I. K. Park, S. S. Lee and C. J. Lee, "Elastic imaging of material surface by ultrasonic atomic force microscopy," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 4. pp. 293-298 (2009)
  8. A. Gianoncelli, G. R. Morrison, B. Kaulich, D. Bacescu, and J. Kovac, "Scanning transmission X-ray microscopy with a configurable detector," Applied Physics Letters, Vol. 89, 251117 (2006) https://doi.org/10.1063/1.2422908
  9. G. Chadzitaskos, "Optical element for X-ray microscopy," Nuclear Instruments and Methods in Physics Research A, Vol. 629, pp. 206-208 (2011) https://doi.org/10.1016/j.nima.2010.10.073
  10. J. Bodzenta, B. Pustelna and Z. Kleszczewski, "Photoacoustic imaging of ion-implanted semiconductor samples," Ultrasonics, Vol. 31, pp. 315-319 (1993) https://doi.org/10.1016/0041-624X(93)90063-6
  11. S. R. Kothapalli and L. V. Wang, "Ex vivo blood vessel imaging using ultrasoundmodulated optical microscopy," Journal of Biomedical Optics, Vol. 14, 014015 (2009) https://doi.org/10.1117/1.3076191
  12. L. Zhang, S. Aite and Z. Yu, "Unique laser-scanning optical microscope for low-temperature imaging and spectroscopy," Review of Scientific Instruments, Vol. 78, 083701 (2007) https://doi.org/10.1063/1.2768924
  13. G. S. Cargill, "Ultrasonic imaging in scanning electron microscopy," Nature, Vol. 286, pp. 691-693 (1980) https://doi.org/10.1038/286691a0
  14. T. W. Murray and O. Balogun, "Highsensitivity laser-based acoustic microscopy using a modulated excitation source," Applied Physics Letters, Vol. 85, pp. 2974-2976 (2004) https://doi.org/10.1063/1.1802387
  15. O. Balogun, G. D. Cole, R. Huber, D. Chinn, T. W. Murray and J. B. Spicer, "High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique," IEEE Transactions of Ultrasonics, Ferroelectrics and Frequency Control, Vol. 58, pp. 226-233 (2011) https://doi.org/10.1109/TUFFC.2011.1789
  16. W. D. Callister, "Materials Science and Engineering: An Introduction," 7th Ed. John Wiley & Sons, New York, USA (2007)
  17. L. Dean, "Rail that survived demolition by "lawrence of arabia": An analysis," JOM Journal of the Minerals, Metals and Materials Society, Vol. 55, No. 7, pp. 12-14 (2003) https://doi.org/10.1007/s11837-003-0115-x
  18. J. Mertz, "Introduction to Optical Microscopy," 1st Ed. Roberts and Company, Colorado, USA (2009)
  19. R. J. Cherry, "New Techniques of Optical Microscopy and Microspectroscopy," CRC Press, Florida, USA (1991)
  20. P. H. Hart, "Hydrogen cracking - its causes, costs and future occurrence," Proc. of 1st International Conference on Weld Metal Hydrogen Cracking in Pipeline Girth Welds, Wollongong, Australia (1999)
  21. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin. L. Sawyer and J. R. Michael, "Scanning Electron Microscopy and X-Ray Microanalysis," 3rd Ed. Kluwer Academic/Plenum Publishers, New York, USA (2003)
  22. D. C. Joy, "Scanningelectronmicroscopy for materials characterization," Current Opinion in Solid State and Materials Science, Vol. 2, pp. 465-468 (1997) https://doi.org/10.1016/S1359-0286(97)80091-5
  23. D. B. Williams and C. B. Carter, "Transmission Electron Microscopy: A Textbook for Materials Science," 1st Ed. Springer, New York, USA (2004)
  24. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, "Tunneling through a controllable vacuum gap," Applied Physics Letters, Vol. 40, pp. 178-180 (1982) https://doi.org/10.1063/1.92999
  25. A. Bryant, D. P. E. Smith, G. Binnig, W. A. Harrison, and C. F. Quate, "Anomalous distance dependence in scanning tunneling microscopy," Applied Physics Letters, Vol. 49, pp. 936-938 (1986) https://doi.org/10.1063/1.97489
  26. G. Binnig and C. F. Quate, "Atomic force microscope," Physics Review Letters, Vol. 56, pp. 930-933 (1986) https://doi.org/10.1103/PhysRevLett.56.930
  27. K. Saito and T. Bell, "Nano polymer micelles for drug delivery system," http://www.pharm.monash.edu.au/courses/honours/claytonprojects/saitobell.html
  28. R. Gr. Maev, "Acoustic Microscopy: Fundamentals and Applications," 1st Ed. Wiley-VCH, New York, USA (2008)
  29. B. T. Khuri-Yakub, "Scanning acoustic microscopy," Ultrasonics, Vol. 31, pp. 361-372 (1993) https://doi.org/10.1016/0041-624X(93)90070-G
  30. C. S. Kim, I. K. Park, K. Y. Jhang and C. Miyasaka, "Determination of elastic modulus of equal-channel-angular-pressed aluminum 5052 alloy by acoustic material signature," Journal of the Korean Society for Nondestructive Testing, Vol. 30, No. 2. pp. 146-154 (2010)
  31. P. V. Zainin, M. H. Manghnani, S. Berezina, B. Koehler, D. Fei and D. A. Rebinsky, "The FIB/SEM technique, atomic force microscopy and acoustic microscopy for detection of subsurface defects in thin DLC coatings," Microscopy and Microanalysis, Vol. 11, pp. 668-669 (2005)
  32. K. Yamanaka and S. Nakano, "Ultrasonic atomic force microscope with overtone excitation of cantilever," Japanese Journal of Applied Physics, Vol. 35 pp. 3787-3792 (1996) https://doi.org/10.1143/JJAP.35.3787
  33. U. Rabe and W. Arnold, "Acoustic microscopy by atomic force microscopy," Applied Physics Letters, Vol. 64, 1493 (1994) https://doi.org/10.1063/1.111869
  34. C. J. Druffner and S. Sathish, "Atomic force and ultrasonic force microscopic investigation of laser-treated ceramic head sliders," Journal of American Ceramic Society, Vol. 86, pp. 2122-2128 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03619.x
  35. J. T. Zeng, K. Y. Zhao, H. R. Zeng, H. Z. Song, L. Y. Zheng, G. R. Li and Q. R. Yin, "Subsurface defect of amorphous carbon film imaged by near field acoustic microscopy," Applied Physics A: Materials Science & Processing, Vol. 91, No. 2, pp. 261-265 (2008) https://doi.org/10.1007/s00339-008-4408-3
  36. T. Nakamura and C. Chang, "Nanoscale quantitative phase imaging using XOR-based X-ray differential interference contrast microscopy," Ultramicroscopy, Vol. 113, pp. 139-144 (2012) https://doi.org/10.1016/j.ultramic.2011.10.012
  37. M. Mayer, C. Grévent, A. Szeghalmi, M. Knez, M. Weigand, S. Rehbein, G. Schneider, B. Baretzky and G. Schütz, "Multilayer fresnel zone plate for soft X-ray microscopy resolves sub-39 nm structures," Ultramicroscopy, Vol. 111, pp. 1706-1711 (2011) https://doi.org/10.1016/j.ultramic.2011.09.003
  38. J. Stohr, "Ultrafast magnetic switching of nanoelements with spin currents," http://www.ssrl.slac.stanford.edu/stohr/spininjection.htm, (2007)
  39. A. Felten, H. Hody, C. Bittencourt, J. -J. Pireaux, D. H. Cruz and A. P. Hitchcock, "Scanning transmission X-ray microscopy of isolated multiwall carbon nanotubes," Applied Physics Letters, Vol. 89, 093123 (2006) https://doi.org/10.1063/1.2345258
  40. J. Kastner, B. Harrer and H. P. Degischer, "High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys," Materials Characterization, Vol. 62, pp. 99-107 (2011) https://doi.org/10.1016/j.matchar.2010.11.004
  41. J. R. Kirtley, "SQUID microscopy for fundamental studies," Physica C: Superconductivity, Vol. 368, pp. 55-65 (2002) https://doi.org/10.1016/S0921-4534(01)01140-6
  42. K. Isawa, T. Uefuji and K. Yamada, "Scanning SQUID microscopy study of electron-doped high-Tc superconductors," Physica C: Superconductivity, Vol. 426-431, pp. 202-207 (2005) https://doi.org/10.1016/j.physc.2005.02.059
  43. C. P. Burrows, A. P. Knights and P. G. Coleman, "Near-surface lateral vacancy migration in O+-implanted SiC studied by positron re-emission microscopy," Applied Surface Science, Vol. 149, pp. 135-139 (1999) https://doi.org/10.1016/S0169-4332(99)00188-9
  44. W. Egger, G. Kögel, P. Sperr, W. Triftshäuser, S. Rödling, J. Bär and H. -J. Gudladt, "Vacancy clusters close to a fatigue crack observed with the München scanning positron microscope," Applied Surface Science, Vol. 194, pp. 214-217 (2002) https://doi.org/10.1016/S0169-4332(02)00106-X
  45. J. Bodzenta, B. Pustelna and Z. Kleszczewski, "Photoacoustic imaging of ion-implanted semiconductor samples," Ultrasonics, Vol. 31, pp. 315-319 (1993) https://doi.org/10.1016/0041-624X(93)90063-6
  46. T. Hoshimiya, "Nondestructive evaluation of surface defects under dry/wet environment by the use of photoacoustic and photothermal electrochemical imaging," NDT & E International, Vol. 32, pp. 133-137 (1999) https://doi.org/10.1016/S0963-8695(98)00063-2

피인용 문헌

  1. Thickness Measurement of Ni Thin Film Using Dispersion Characteristics of a Surface Acoustic Wave vol.34, pp.2, 2014, https://doi.org/10.7779/JKSNT.2014.34.2.171