DOI QR코드

DOI QR Code

Evaluation of Adhesive Properties in Polymeric Thin Film by Ultrasonic Atomic Force Microscopy

UAFM을 이용한 폴리머 박막의 접합 특성 평가

  • 곽동열 (서울과학기술대학교 기계공학과) ;
  • 박태성 (서울과학기술대학교 기계공학과) ;
  • 박익근 (서울과학기술대학교 기계공학과) ;
  • 저자
  • Received : 2012.02.03
  • Accepted : 2012.04.13
  • Published : 2012.04.30

Abstract

This study presents the assessment results of adhesive properties on the interface between a silicon wafer and nano-scale polymer thin film pattern through UAFM images by using the contact resonance frequency of the cantilever. For the experiment, we varied surface treatment processes for the silicon wafer and fabricated a 300nm polymer thin film pattern through lithography. Images from the optical microscope were used to compare the produced test specimens for adhesive condition and the critical load value from the nano scratch test was used to verify the adhesive condition of the nano pattern. Each test specimen resulted in a $1{\mu}m{\times}1{\mu}m$ surface image and subsurface adhesive image. Adhesive condition was evaluated by image contrast differences on the interface according to the changing amplitudes and phases of contact resonance frequency.

본 연구에서는 초음파원자현미경 캔틸레버의 접촉 공진주파수를 이용하여 실리콘 웨이퍼와 나노 스케일의 폴리머 박막 패턴의 접합면 사이에서 나타나는 접합 특성을 UAFM 이미지를 통해 평가하였다. 이를 위해 실리콘 웨이퍼의 표면 처리 공정을 다르게 하였고 리소그래피 공정을 통해 300 nm의 폴리머 박막 패턴을 제작하였다. 제작된 시험편의 접합 상태를 광학현미경 이미지를 통해 서로 비교하였고 나노 스크래치 시험의 임계하중 값을 통하여 나노 패턴의 접합 상태를 검증하였다. 각각의 시험편에 대해 UAFM을 이용하여 $1{\mu}m{\times}1{\mu}m$ 크기의 표면 이미지와 표층부의 접합 상태이미지를 각각 얻었고 접촉 공진주파수의 진폭과 위상의 변화로 인한 접합부의 이미지 콘트라스트 차이로 접합 상태를 평가하였다.

Keywords

References

  1. K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike and T. Goto, "Quantitative material characterization by ultrasonic AFM," Surface Interface Analysis, Vol. 27, pp. 600-603 (1999) https://doi.org/10.1002/(SICI)1096-9918(199905/06)27:5/6<600::AID-SIA508>3.0.CO;2-W
  2. S. Hu, C. Su and W. Arnold, "Imaging of subsurface structures using atomic force acoustic microscopy at GHz frequencies," Applied Physics, Vol. 109, No. 8, pp. 084324 (2011) https://doi.org/10.1063/1.3573484
  3. U. Rabe, K. Janser and W. Arnold, "Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment," Review of Science Instruments, Vol. 67, No. 9, pp. 3281-3293 (1996) https://doi.org/10.1063/1.1147409
  4. K. Yamanaka and H. Ogiso, "Ultrasonic force microscopy for nanometer resolution subsurface imaging," Applied Physics Letters, Vol. 65 No. 2, pp. 178-180 (1994)
  5. T. S. Park, D. R. Kwak, I. K. Park, C. S. Kim and K. Y. Jhang, "Evaluation of elastic properties and analysis of contact resonance frequency of cantilever for ultrasonic AFM," Korean Society for Nondestructive Testing, Vol. 31, No. 2, pp. 174-180 (2011)
  6. T. S. Park, D. R. Kwak, I. K. Park and C. S. Kim, "Vibro-contact analysis of ultrasonic atomic force microscopy tip and it's application to nano surface," Korean Society for Nondestructive Testing, Vol. 30, No. 2, pp. 132-138 (2011)
  7. Z. Shan and S. K. Sitaraman, "Elastic-plastic characterization of thin films using nanoindentation technique," Thin Solid Films, Vol. 437, pp. 176-181 (2003) https://doi.org/10.1016/S0040-6090(03)00663-1
  8. C. K. Huang, W. M. Lou, C. J. Tsai, T. C. Wu and H. Y. Lin, "Mechanical properties of polymer thin film measured by the bulge test," Thin Solid Films, Vol. 515, pp. 7222-7226 (2007) https://doi.org/10.1016/j.tsf.2007.01.058
  9. J. Li, H. Li, X. Yun and A. S. L. Fok, "A comparison of bond strengths measured using cantilever bending and micro-tensile methods," Dental Materials, Vol. 27, pp. 1246-1251 (2011) https://doi.org/10.1016/j.dental.2011.08.593
  10. C. N. Kouyumdjiev, I. V. Ivanov and R. R. Tanov, "Determination of stress in coatings by the bending strip method in the case of large displacements," Surface and Coating Technology, Vol. 113, pp. 113-119 (1999). https://doi.org/10.1016/S0257-8972(98)00830-5
  11. D. Xiang, M. Chen, Y. Ma and F. Sun, "Adhesive strength of CVD diamond thin films quantitatively measured by means of the bulge and blister test," Journal of University of Science and Technology Beijing, Vol. 15, No. 4, pp. 474-479 (2008) https://doi.org/10.1016/S1005-8850(08)60089-4
  12. R. Kitey, P. H. Geubelle and N. R. Sottos, "Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate," Mechanics and Physics of Solids, Vol. 57, pp. 51-66 (2009) https://doi.org/10.1016/j.jmps.2008.10.002
  13. O. S. Heavens, "Some factors influencing the adhesion of films produced by vacuum evaporation," Journal of Physics Radium, Vol. 11, pp. 355-359 (1950) https://doi.org/10.1051/jphysrad:01950001107035500
  14. V. V. Tsukruk, A. Sidorenko, V. V. Gorbunov and S. A. Chizhik, "Surface nanomechanical properties of polymer nanocomposite layers," Langmuir, Vol. 17, pp. 6715-6719 (2001) https://doi.org/10.1021/la010761v
  15. A. Kovalev, H. Shulha, M. Lemieux, N. Myshkin and V. V. Tsukruk, "Nanomechanical probing of layered nanoscale polymer films with atomic force microscopy," Journal of Materials Research, Vol. 19, pp. 716-728 (2003)
  16. I. Iwatsubo, T. Takahashi and M. Naoe, "Adhesive characteristics of Fe films deposited by ion beam sputtering with Ar ion bombardment," Thin Solid Films, Vol. 343-344, pp. 261-264 (1999) https://doi.org/10.1016/S0040-6090(98)01765-9
  17. K. L. Johnson, "Contact Mechanics," 9th Edition, Cambridge University Press, United Kingdom, 84-106 (1985)