DOI QR코드

DOI QR Code

Non-Destructive Evaluation of Material Properties of Nanoscale Thin-Films Using Ultrafast Optical Pump-Probe Methods

  • Received : 2012.02.24
  • Accepted : 2012.04.13
  • Published : 2012.04.30

Abstract

Exploration in microelectromechanical systems(MEMS) and nanotechnology requires evaluation techniques suitable for sub-micron length scale so that thermal and mechanical properties of novel materials can be investigated for optimal design of miro/nanostructures. The ultrafast optical pump-probe technique provides a contact-free and non-destructive way to characterize nanoscale thin-films, and its ultrahigh temporal resolution enables the study of heat-transport phenomena down to a sub-picosecond regime. This paper reviews the principle of optical pump-probe technique and introduces its application to the area of micro/nano-NDE.

Keywords

References

  1. T. Murmu and S. C. Pradhan, "Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory," Physica E, Vol. 41, pp. 1451-1456 (2009) https://doi.org/10.1016/j.physe.2009.04.015
  2. J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing and W. I. Milne, "Diamond and diamond-like carbon MEMS," J. Micromech. Microeng. Vol. 17, pp. S147-S163 (2007) https://doi.org/10.1088/0960-1317/17/7/S12
  3. O. Kraft, and C. A. Volkert, "Mechanical testing of thin films and small structures," Adv. Eng. Mater. Vol. 3, pp. 99-110 (2001) https://doi.org/10.1002/1527-2648(200103)3:3<99::AID-ADEM99>3.0.CO;2-2
  4. E. J. Gonzalez, J. E. Bonevich, G. R. Stafford, G. White and D. Josell, "Thermal transport through thin films: Mirage technique measurements on aluminum/ titanium multilayers," J. Mater. Res. Vol. 15, pp. 764-771 (2000) https://doi.org/10.1557/JMR.2000.0110
  5. O. R. Shojaei and A. Karimi, "Comparison of mechanical properties of TiN thin films using nanoindentation and bulge test," Thin Sol. Films Vol. 332, pp. 202-208 (1998) https://doi.org/10.1016/S0040-6090(98)01057-8
  6. D. G. Cahill, M. Katiyar and J. R. Abelson, "Thermal conductivity of a-Si:H thin films," Phys. Rev. B Vol. 50, pp. 6077-6081 (1994) https://doi.org/10.1103/PhysRevB.50.6077
  7. G. A. Antonelli, B. Perrin, B. C. Daly, and D. G. Cahill, "Characterization of mechanical and thermal properties using ultrafast optical metrology," MRS Bulletin, Vol. 31, pp. 607-613 (2006) https://doi.org/10.1557/mrs2006.157
  8. S. Krishnaswamy, "Photoacoustic methods of materials characterization," in Springer Handbook of Experimental Solid Mechanics, W. N. Sharpe, Ed., Springer, New York, USA (2008)
  9. Y. Y. Kim, H. A. Alwi, Q. Huang, R. Abd-Shukor, C. F. Tsai, H. Wang, K. W. Kim, D. G. Naugle and S. Krishnaswamy, "Thermal diffusivity measurement of $YBa_{2}Cu_{3}O_{7-x}$ thin film with a picosecond thermoreflectance technique," Physica C, Vol. 470, pp. 365-368 (2010) https://doi.org/10.1016/j.physc.2010.02.016
  10. C. J. K. Richardson and J. B. Spicer, "Characterization of heat-treated tungsten thin films using picosecond duration thermoelastic transients," Opt. Laser Eng. Vol. 40, pp. 379-391 (2003) https://doi.org/10.1016/S0143-8166(02)00090-8
  11. C. Casiraghi, A. C. Ferrari, and J. Robertson, "Raman spectroscopy of hydrogenated amorphous carbons," Phys. Rev. B Vol. 72, 085401 (2005) https://doi.org/10.1103/PhysRevB.72.085401
  12. A. Erdemir and C. Donnet, "Tribology of diamond-like carbon films: recent progress and future prospects," J. Phys. D: Appl. Phys. Vol. 39 pp. R311-R327 (2006) https://doi.org/10.1088/0022-3727/39/18/R01
  13. G. Thorwarth, C. V. Falub, U. Müller, B. Weisse, C. Voisard, M. Tobler and R. Hauert, "Tribological behavior of DLCcoated articulating joint implants," Acta Biomater. Vol. 6, pp. 2335-2341 (2010) https://doi.org/10.1016/j.actbio.2009.12.019
  14. V. I. Polyakov, A. Yu. Mityagin, A. I. Rukovishnikov, B. Druz, I. Zaritsky and Y. Yervtukchov, "Effect of various adsorbates on electronic states of the thin diamond-like carbon films," Diamond Relat. Mater. Vol. 15, pp. 1926-1929 (2006) https://doi.org/10.1016/j.diamond.2006.06.001
  15. D. S. da Silva, A. D. S. Côrtes, M. H. Jr. Oliveira, E. F. Motta, G. A. Viana, P. R. Mei and F. C. Marques, "Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells," J. Appl. Phys. Vol. 110, 043510 (2011) https://doi.org/10.1063/1.3622515
  16. J. K. Luo, J. H. He, Y. Q. Fu, A. J. Flewitt, S. M. Spearing, N. A. Fleck and W. I. Milne, "Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages," J. Micromech. Microeng. Vol. 15, pp. 1406-1413 (2005) https://doi.org/10.1088/0960-1317/15/8/005
  17. C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. Grill, V. V. Patel, J. P. Doyle and K. L. Saenger, "Picosecond optical studies of amorphous diamond and diamondlike carbon: thermal conductivity and longitudinal sound velocity," J. Appl. Phys. Vol. 76, pp. 2636-2640 (1994) https://doi.org/10.1063/1.357560
  18. D. G. Cahill and R. O. Pohl, "Heat flow and lattice vibrations in glasses," Solid State Commun. Vol. 70, pp. 927-930 (1989) https://doi.org/10.1016/0038-1098(89)90630-3
  19. J. L. Arlein, S. E. M. Palaich, B. C. Daly, P. Subramonium and G. A. Antonelli, "Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films," J. Appl. Phys. Vol. 104, 033508 (2008) https://doi.org/10.1063/1.2963366
  20. Y. Y. Kim, H. A. Alwi, R. Awang and S. Krishnaswamy, "Photoacoustic measurements on thermal properties of hydrogenated amorphous carbon films: the effect of hydrogen dilution," J. Phys.: Conf. Ser. Vol. 278, 012006 (2010)
  21. Y. Y. Kim, H. A. Alwi, R. Awang and S. Krishnaswamy, "Influence of radio frequency power on thermal diffusivity of plasma enhanced chemical vapor deposition-grown hydrogenated amorphous carbon thin-films," J. Appl. Phys. Vol. 109, 113503 (2011) https://doi.org/10.1063/1.3592291
  22. Y. Y. Kim, H. A. Alwi, R. Awang and S. Krishnaswamy, "Effects of deposition time duration on thermal diffusivity of hydrogenated amorphous carbon films," Jpn. J. Appl. Phys. Vol. 50, 125602 (2011) https://doi.org/10.1143/JJAP.50.125602
  23. M. A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai and K. E. Goodson, "Thermal properties of metal-coated vertically aligned single-wall nanotube arrays," J. Heat Transfer Vol. 130, 052401 (2008) https://doi.org/10.1115/1.2885159
  24. K. F. Mak, C. H. Lui and T. F. Heinz, "Measurement of the thermal conductance of the graphene/$SiO_{2}$ interface," Appl. Phys. Lett. Vol. 97, 221904 (2010) https://doi.org/10.1063/1.3511537
  25. S. T. Huxtable, D. G. Cahill, S. Shenogin, L. P. Xue, R. Ozisik, P. Barone, M. Usrey, M. S. Strano, G. Siddons, M. Shim and P. Keblinski, "Interfacial heat flow in carbon nanotube suspensions," Nature Mater. Vol. 2, pp. 731-734 (2003) https://doi.org/10.1038/nmat996
  26. H. Maune, H. Y. Chiu and M. Bockrath, "Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates," Appl. Phys. Lett. Vol. 89, 013109 (2006) https://doi.org/10.1063/1.2219095

Cited by

  1. A Femtosecond Laser Metrology on the Thermal Conductivity of a Nanoscale Superconductor Material vol.35, pp.5, 2015, https://doi.org/10.7779/JKSNT.2015.35.5.314
  2. Thermomechanical characterization of a nanoscale copper thin-film using picosecond ultrasonics vol.18, pp.9, 2017, https://doi.org/10.1007/s12541-017-0146-9