DOI QR코드

DOI QR Code

Porous Glass Electroosmotic Pumps Reduced Bubble Generation Using Reversible Redox Solutions

가역적 산화환원반응 용액을 이용하여 기포 발생을 줄인 다공성 유리막 전기삼투 펌프

  • Received : 2012.02.29
  • Accepted : 2012.04.09
  • Published : 2012.07.01

Abstract

This paper presents the performance of a porous glass electroosmotic pump using an iodide/triiodide aqueous solution. The porous glass electroosmotic pump is characterized in terms of the flow rate and voltage. The flow rate and voltage increases linearly with current. A point where the voltage significantly increases is observed owing to an excess in redox capacity. The transition time monotonously decreases with current. The normalized flow rate (flow rate per membrane surface area) is used to compare previous results with results obtained in this study. The normalized flow rate of porous glass frits is three times higher than that of Nafion 117.

본 연구에서는 요오드이온과 삼요오드이온의 가역적인 산화환원 반응에 의하여 기포를 생성하지 않는 다공성 유리막 전기삼투펌프의 성능 평가에 대한 연구를 수행하였다. 다공성 유리막 전기삼투펌프의 성능은 유량과 전압으로 측정되었다. 전기삼투펌프의 유량과 전압은 적용 전류가 증가할 때 선형적으로 증가하였고, 전압의 경우 일정 시간 후 작동 유체가 산화환원반응을 할 수 있는 용량의 초가로 인하여 급격히 전압이 증가하는 변이 지점이 발생하였다. 변이시간은 전류의 증가에 의하여 단조적으로 감소하였다. 유량을 표면적으로 나눈 표준화된 유량을 이용하여 다공성 유리막과 이전 나피온 막에서의 펌핑 성능을 비교하였고, 다공성 유리막에서 대략 3 배정도 높은 수치를 가졌다.

Keywords

References

  1. Jiang, L., Mikkelsen, J., Koo J. M., Huber, D., Yao, S., Zhang, L., Zhou, P., Maverty, J. G., Prasher, R., Santiago, J. G., Kenny, T. W. and Goodson, K. E., 2002, "Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits," IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 3, pp. 347-354. https://doi.org/10.1109/TCAPT.2002.800599
  2. Buie, C. R., Kim, D., Liester, S. and Santiago, J. G., 2007, "An Electro-Osmotic Fuel Pump for Direct Methanol Fuel Cells," Electro Chemical and Solid- State Letters, Vol. 10, No. 11, pp. B196-B200. https://doi.org/10.1149/1.2772083
  3. Kwon, K. and Kim, D., 2010, "Air Pumps for Polymer Electrolyte Membrane Fuel Cells," Transactions of the KSME (B), Vol. 34, No. 7, pp. 715-720.
  4. Litster, S., Suss, M. E. and Santiago, J. G., 2010, "A Two-Liquid Electroosmotic Pump Using Low Applied Voltage and Power," Sensors and Actuators A: Physics, Vol. 163, No. 1, pp. 311-314. https://doi.org/10.1016/j.sna.2010.07.008
  5. Laser, D. J. and Santiago, J. G., 2004, "A Review of Micropumps," Journal of Micromechanics and Microengineering, Vol. 14, No. 6, pp. R35-R64. https://doi.org/10.1088/0960-1317/14/6/R01
  6. Yao, S., Hertzog, D. E., Zeng, S. and Santiago, J. G., 2003, "Porous Glass Electroosmotic Pumps: Design and Experiments," Journal of Colloid and Interface Science, Vol. 268, No. 1, pp. 143-153. https://doi.org/10.1016/S0021-9797(03)00730-6
  7. Kim, D., Posner J. D. and Santiago, J. G., 2008, "High Flow Rate per Power Electroosmotic Pumping Using Low Ion Density Solvents," Sensors and Actuators A: Physics, Vol. 141, No. 1, pp. 201-212. https://doi.org/10.1016/j.sna.2007.07.023
  8. Kwon, K. and Kim, D., 2011, "Characterization of Electroosmotic Pumps Using Methanol/Water Mixtures with Various Compositions," Sensors and Actuators A: Physics, Vol. 166, No. 1, pp. 88-93 https://doi.org/10.1016/j.sna.2010.12.016
  9. Chen Y. F., Li, M. C., Hu, Y. H., Chang W. J. and Wang, C, C., 2008, "Low-Voltage Electroosmotic Pumping Using Porous Anodic Alumina Membranes," Microfluidics and Nanofluidics, Vol. 6, No. 2, pp. 145-162.
  10. Yao, S., Myers, A. M., Posner, J. D., Rose, K. and Santiago, J. G., 2006, "Electroosmotic Pumps Fabricated from Porous Silicon Membranes," Journal of Microelectromechanical Systems, Vol. 15, No. 3, pp. 717-728. https://doi.org/10.1109/JMEMS.2006.876796
  11. Zeng, S., Chen, C. H., Santiago, J. G., Chen, J. R., Zare, R. N., Tripp, J. A., Svec, F. and Frechet, J. M., 2002, "Electroosmtoci flow Pumps with Polymer Frits," Sensors and Actuators B: Chemical, Vol. 82, No. 2-3, pp. 209-212. https://doi.org/10.1016/S0925-4005(01)01007-3
  12. Kwon, K., Park, C. W. and Kim, D., 2012, "High-Flowrate, Compact Electroosmotic Pumps with Porous Polymer Track-Etch Membranes," Sensors and Actuators A: Physics, Vol. 175, No. 1, pp. 108-115. https://doi.org/10.1016/j.sna.2011.12.050
  13. Brask, A., Kutter, J. P. and Bruus, H., 2005, "Long-Term Stable Electroosmotic Pump with ion Exchange Membranes," Lab on a Chip, Vol. 5, No.7, pp. 730-738. https://doi.org/10.1039/b503626g
  14. Lin, C. W., Yao, S., Posner, J. D., Myers, A. M. and Santiago, J. G., 2007, "Toward Orientation-Independent Design for Gas Recombination in Closed-Loop Electroosmotic Pumps," Sensors and Actuators B: Chemical, Vol. 128, No. 1, pp. 334-339. https://doi.org/10.1016/j.snb.2007.05.029
  15. Shin, W., Lee, J. M., Nagaralet, R. K., Shin, S. J. and Heller, A., 2011, "A Miniature, Nongassing Electroosmotic Pump Operating at 0.5 V," Journal of the American Chemical Society, Vol. 133, No. 8, pp. 2374-2377. https://doi.org/10.1021/ja110214f
  16. Nagarale, R. K., Heller, A. and Shin, W., 2012, "A Stable Ag/Ceramic-Membrane/$Ag_2O$ Electroosmotic Pump Built with a Mesoporous Phosphosilicate-on Silica Frit Membrane," Journal of the Electrochemical Society, Vol. 159, No. 1, pp. P14-P17. https://doi.org/10.1149/2.059201jes
  17. Norman, M. A., Evans, C. E., Fuoco, A. R., Noble, R. D. and Koval, C. A., 2005, "Characterization of a Membrane-Based, Electrochemically Driven Pumping System Using Aqueous Electrolyte Solutions," Analytical Chemistry, Vol. 77, No.19, pp. 6374-6380. https://doi.org/10.1021/ac0508705
  18. Jeerage, K. M., Noble R. D. and Koval C. A., 2007, "Investigation of am Aqueous Lithium Iodide/Triiodide Electrolyte for Dual/Chamber Electrochemical Actuators," Sensors and Actuators B: Chemical, Vol. 125, No. 1, pp. 180-188. https://doi.org/10.1016/j.snb.2007.02.003
  19. Yao, S., Hertzog, D. E., Zeng, S. and Santiago, J. G., 2003, "Porous Glass Electroosmotic Pumps: Theory," Journal of Colloid and Interface Science, Vol. 268, No. 1, pp. 133-142. https://doi.org/10.1016/S0021-9797(03)00731-8
  20. Bard, A.J., Faulkner, L. R, 1980, Electrochemical Methods, John Wiley & Sons, New Yourk.