DOI QR코드

DOI QR Code

Study on Synthesis of Boron-Containing Nanoparticles Using Thermal Plasma System

고온 플라즈마를 이용한 붕소 함유 나노입자 제조에 관한 연구

  • Received : 2012.01.31
  • Accepted : 2012.04.19
  • Published : 2012.07.01

Abstract

A new method for producing boron-containing nanoparticles is described. Boron trichloride ($BCl_3$) and methane ($CH_4$) are dissociated through injection into a thermal plasma followed by a nucleation process producing boron or boron carbide nanoparticles. X-ray photoelectron spectroscopy was used to detect B-C bonds related to the carbide state and to probe the ratio of boron to carbon in the B-C bond structure. In addition, nanoparticles were characterized with scanning transmission electron microscopy and electron energy loss spectroscopy. It was found that nanoparticles were in the range 30-70 nm and a boron to carbon ratio in the B-C bond structure of up to 2 can be reached when $BCl_3$ of 20 sccm and $CH_4$ of 25 sccm were used.

열플라즈마 시스템을 이용하여 붕소 함유 나노입자를 제조하기 위한 새로운 방법이 시도되었다. $BCl_3$$CH_4$ 전구체 기체를 열플라즈마 영역으로 분사하여 고온에서 분해시킨 후, 기체상 응핵 및 성장 과정을 통하여 붕소 또는 붕소 카바이드 입자를 제조하였다. X 선 광분자 분석법을 이용하여 입자 표면의 화학적 결합 상태 및 카바이드와 관련된 B-C 결합 구조 내의 붕소와 탄소의 원자 비율을 측정 및 분석하였다. 또한 나노입자 형상 및 크기 분석을 위해 주사식 투과현미경과 전자에너지손실분광법이 이용되었다. 제조된 나노입자는 30-70 nm 내의 크기 분포를 갖고 있으며, $BCl_3$$CH_4$ 전구체 기체가 각각 20 sccm, 25 sccm 사용되었을 때 B-C 결합 구조 내의 붕소와 탄소의 비는 2.13 이었다.

Keywords

References

  1. Zhang, X. W., Zou, Y. J., Yan, H., Wang, B., Chen, G. H. and Wong, S. P., 2000, "Electrical Properties and Annealing Effects on the Stress of RF-sputtered c-BN Films," Mater. Lett., Vol. 45, pp. 111-115. https://doi.org/10.1016/S0167-577X(00)00086-0
  2. Bekish, Y. N., Poznyak, S. K., Tsybulskaya, L. S. and Gaevskaya, T. V., 2010, "Electrodeposited Ni-B Alloy Coatings: Structure, Corrosion Resistance and Mechanical Properties," Electrochim. Acta., Vol. 55, pp. 2223-2231. https://doi.org/10.1016/j.electacta.2009.11.069
  3. Van Devener, B., Perez, J. P. L., Jankovich, J. and Anderson, S. L., 2009, "Oxide-Free, Catalyst-Coated, Fuel-Soluble, Air-Stable Boron Nanopowder as Combined Combustion Catalyst and High Energy Density Fuel," Energ. Fuel, Vol. 23, pp. 6111-6120. https://doi.org/10.1021/ef900765h
  4. Mortensen, M. W., Sorensen, P. G., Bjorkdahl, O., Jensen, M. R., Gundersen, H. J. G. and Bjornholm, T., 2006, "Preparation and Characterization of Boron Carbide Nanoparticles for Use as a Novel Agent in T Cell-guided Boron Neutron Capture Therapy," Appl. Radiat. Isotopes, Vol. 64, pp. 315-324. https://doi.org/10.1016/j.apradiso.2005.08.003
  5. Bouchacourt, M. and Thevenot, F., 1981, "The Properties and Structures of the Boron Carbide Phase," Boron, Borides and Related Compounds, pp. 227-235.
  6. Si, P. Z., Zhang, M., You, C. Y., Geng, D. Y., Du, J. H., Zhao, X. G., Ma, X. L. and Zhang, Z. D., 2003, "Amorphous Boron Nanoparticles and BN Encapsulating Boron Nano-peanuts Prepared by Arc-decomposing Diborane and Nitriding," J. Mater. Sci., Vol. 38, pp. 689-692. https://doi.org/10.1023/A:1021832209250
  7. Bellott, B. J., Noh, W., Nuzzo, R. G. and Girolami, G. S., 2009, "Nanoenergetic Materials: Boron Nanoparticles from the Pyrolysis of Decaborane and Their Functionalisation," Chem. Commun., Vol. 22, pp. 3214-3215.
  8. Marzik, J. V., Suplinskas, R. J., Wilke, R. H. T., Canfield, P. C., Finnemore, D. K., Rindfleisch, M., Margolies, J. and Hannahs, S. T., 2005, "Plasma Synthesized Doped B Powders for $MgB_2$ Super-conductors," Physica, Vol. C 423, pp.83-88.
  9. Pickering, A. L., Mitterbauer, C., Browning, N. D., Kauzlarich, S. M. and Power, P. P., 2007, "Room Temperature Synthesis of Surface-Functionalised Boron Nanoparticles," Chem. Commun., Vol. 6, pp.580-582.
  10. Shin, W. G., Calder, S., Ugurlu, O. and Girshick, S. L., 2011, "Production and Characterization of Boron Nanoparticles Synthesized with a Thermal Plasma System," J. Nanoparticle Res., Vol. 13, pp. 7187-7191. https://doi.org/10.1007/s11051-011-0633-3
  11. Thevenot, F., 1990, "Boron Carbide. A Comprehensive Review," Journal of the European Ceramic Society, pp. 227-235.
  12. Mackinnon, I. M. and Reuben, B. G. 1975, "The Synthesis of Boron Carbide in an RF Plasma," Journal of the Electrochemical Society: Solid-State Science and Technology, Vol.122, pp. 806-811.
  13. Shi, L., Gu, Y., Chen, L., Qian, Y., Yang, Z. and Ma, J. 2003, "A Low Temperature Synthesis of Crystalline B4C Ultrafine Powders," Solid State Communications, Vol.128, pp. 5-7. https://doi.org/10.1016/S0038-1098(03)00627-6
  14. Rao, N. P., Tymiak, N., Blum, J., Neuman, A., Lee, H. J., Girshick, S. L., McMurry, P. H. and Heberlein, J., 1998, "Hypersonic Plasma Particle Deposition of Nanostructured Silicon and Silicon Carbide," J. Aerosol Sci., Vol. 29, pp.707-720. https://doi.org/10.1016/S0021-8502(97)10015-5
  15. Hafiz, J., Wang, X., Mukherjee, R., Mook, W., Perrey, C. R., Deneen, J., Heberlein, J. V. R., McMurry, P. H., Gerberich, W. W., Carter, C. B. and Girshick, S. L., 2005, "Hypersonic Plasma Particle Deposition of Si-Ti-N Nanostructured Coatings," Surf. Coat. Tech., Vol. 188, pp. 364-370.
  16. Hafiz, J., Mukherjee, R., Wang, X., Heberlein, J. V. R., McMurry, P. H. and Girshick, S. L., 2006, "Analysis of Nanostructured Coatings Synthesized Through Ballistic Impaction of Nanoparticles," Thin Solid Films, Vol. 515, pp.1147-1151. https://doi.org/10.1016/j.tsf.2006.07.121
  17. Rao, N., Girshick, S., Heberlein, J., McMurry, P., Jones, S., Hansen, D. and Micheel, B., 1995, "Nanoparticle Formation Using a Plasma Expansion Process," Plasma Chemistry and Plasma Processing, Vol. 15, pp. 581-606. https://doi.org/10.1007/BF01447062
  18. Caretti, I., Gago, R., Albella, J. M. and Jimenez, I., 2008, "Boron Carbides Formed by Coevaporation of B and C Atoms: Vapor Reactivity, $B_{x}C_{1-x}$ Composition, and Bonding Structure," Physical Review B (Condensed Matter and Materials Physics), Vol. 77, 174109. https://doi.org/10.1103/PhysRevB.77.174109