DOI QR코드

DOI QR Code

Frequency Dependency of Multi-layer OLED Current Density-voltage Shift and Its Application to Digitally-driven AMOLED

  • Kim, Hyunjong (Department of Electrical Engineering and Computer Science, and Inter-university Semiconductor Research Center, Seoul National University) ;
  • Kim, Suhwan (Department of Electrical Engineering and Computer Science, and Inter-university Semiconductor Research Center, Seoul National University) ;
  • Hong, Yongtaek (Department of Electrical Engineering and Computer Science, and Inter-university Semiconductor Research Center, Seoul National University)
  • Received : 2012.04.13
  • Accepted : 2012.05.03
  • Published : 2012.06.25

Abstract

We report, for the first time, operation frequency dependence of current density-voltage ($J_{OLED}-V_{OLED}$) shift for multi-layer organic light-emitting diodes (OLEDs). When the OLEDs were electrically stressed for 21 hours with 50% duty voltage pulses at 60, 120, 240, and 360 Hz, the JOLED-VOLED shifts were suppressed by half for 360 Hz operation compared with 60 Hz operation, but with little change in emission efficiencies. This frequency dependent $J_{OLED}-V_{OLED}$ shift is believed to be commonly observed for typical multi-layer OLEDs and can be used to further improve lifetime of digitally-driven active-matrix OLED displays.

Keywords

References

  1. M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, "Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display," IEEE Trans. Elec. Dev. 46, 2282-2288 (1999). https://doi.org/10.1109/16.808054
  2. M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, "6-bit digital VGA OLED," Tech. Dig. SID 31, 912-915 (2000). https://doi.org/10.1889/1.1833103
  3. Y. Tanada, M. Osame, R. Fukumoto, K. Saito, J. Sakata, S. Yamazaki, S. Murakami, S. Inose, and N. Miyoshi, "A 4.3-in. VGA (188 ppi) AMOLED display with a new driving method," Tech. Dig. SID 35, 1398-1401 (2004). https://doi.org/10.1889/1.1821355
  4. S. Ono, K. Miwa, and T. Tsujimura, "Active-matrix OLED displays by equally-separated-subframe driving method," Tech. Dig. SID 37, 325-328 (2006). https://doi.org/10.1889/1.2433492
  5. A. Nathan, G. R. Chaji, and S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," J. Display Technology 1, 267-277 (2005). https://doi.org/10.1109/JDT.2005.858913
  6. J. Kim, Y. Hong, and J. Kanicki, "Amorphous silicon TFT-based active-matrix organic polymer LEDs," IEEE Elec. Dev. Lett. 24, 451-453 (2003). https://doi.org/10.1109/LED.2003.814999
  7. S. Yujuan, Z. Yi, C. Xinfa, and L. Shiyong, "A simple and effective AC pixel driving circuit for active matrix OLED," IEEE Trans. Elec. Dev. 50, 1137-1140 (2003). https://doi.org/10.1109/TED.2003.812100
  8. Y.-C. Lin and H.-P. D. Shieh, "Improvement of brightness uniformity by AC driving scheme for AMOLED display," IEEE Elec. Dev. Lett. 25, 728-730 (2004). https://doi.org/10.1109/LED.2004.837535
  9. Y. Si, L. Lang, Y. Zhao, X. Chen, and S. Liu, "Improvement of pixel electrode circuit for active-matrix OLED by application of reverse-biased voltage," IEEE Trans. Cir. Sys. 52, 856-859 (2005). https://doi.org/10.1109/TCSII.2005.853344
  10. D. Zou, M. Yahiro, and T. Tsutsui, "Improvement of current-voltage characteristics in organic light emitting diodes by application of reversed-bias voltage," Jpn. J. Appl. Phys. 37, L1406-L1408 (1998). https://doi.org/10.1143/JJAP.37.L1406
  11. X. Liu, W. Li, J. Yu, J. Peng, Y. Zhao, G. Sun, X. Zhao, Y. Yu, and G. Zhong, "Effect of duty ratio of driving voltage on the forming process in aging of organic electro-luminescent device," Jpn. J. Appl. Phys. 37, 6633-6635 (1998). https://doi.org/10.1143/JJAP.37.6633
  12. T. Tsujioka, H. Fujii, Y. Hamada, and H. Takahashi, "Driving duty ratio dependence of lifetime of tris (8-hydroxy-quinolinate) aluminum-based organic light-emitting diodes," Jpn. J. Appl. Phys. 40, 2523-2526 (2001). https://doi.org/10.1143/JJAP.40.2523
  13. J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, and J. Shi, "Degradation mechanisms in organic light emitting diodes," Synth. Met. 111-112, 233-236 (2000). https://doi.org/10.1016/S0379-6779(99)00370-7
  14. D. Zou and T. Tsutsui, "Voltage shift phenomena introduced by reverse-bias application in multilayer organic light emitting diodes," J. Appl. Phys. 87, 1951-1956 (2000). https://doi.org/10.1063/1.372119
  15. M. Nakai, H. Fujii, T. Tsujioka, Y. Hamada, and H. Takahashi, "Degradation of organic layers of organic light emitting devices by continuous operation," Jpn. J. Appl. Phys. 41, 881-884 (2002). https://doi.org/10.1143/JJAP.41.881
  16. N. Mohan, K. S. Karim, S. Prakash, and A. Nathan, "Stability issues in digital circuits in amorphous silicon technology," Proc. Canadian Conference on Electrical and Computer Engineering 1, 13-16 (2001).
  17. S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, "The internal electric field distribution in bilayer organic light emitting diodes," Org. Electron. 3, 129-141 (2002). https://doi.org/10.1016/S1566-1199(02)00050-2
  18. D. Y. Kondakov, "Direct observation of deep electron traps in aged organic light emitting diodes," J. Appl. Phys. 97, 024503-1-024503-5 (2005). https://doi.org/10.1063/1.1835567
  19. Z. D. Popovic and H. Aziz, "Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs)," IEEE J. Select. Topics Quantum Electron. 8, 362-371 (2002). https://doi.org/10.1109/2944.999191
  20. H. Kim, S. Kim, Y. Hong, S. W. Chang, D. Lee, D. S. Jeong, and H. K. Chung, "Frequency dependence of OLED voltage shift degradation," Proc. IMID 7, 1108-1111 (2007).