DOI QR코드

DOI QR Code

Single Mode Lasing in InGaAsP/InP Semiconductor Coupled Square Ring Cavities

  • Hyun, Kyung-Sook (Department of Optical Engineering, Sejong University) ;
  • Lee, Taekyu (Department of Optical Engineering, Sejong University) ;
  • Moon, Hee-Jong (Department of Optical Engineering, Sejong University)
  • Received : 2012.04.05
  • Accepted : 2012.05.09
  • Published : 2012.06.25

Abstract

This work reports the stability of the resonant characteristics in multimode interferometer coupled square ring semiconductor cavities. Based on the analysis of single square ring cavities, the single mode operations in the multimode interferometer coupled ring cavities are analyzed and the devices are demonstrated on the semiconductor multiple quantum well epitaxial structure. By varying the lasing conditions such as substrate temperature and input pump power, single resonant mode operations are also observed.

Keywords

References

  1. R. Zhang, Z. Ren, and S. Yu, "Fabrication of InGaAsP double shallow ridge rectangular ring laser with total internal reflection mirror by cascade etching technique," IEEE Photon. Technol. Lett. 19, 1714-1716 (2007). https://doi.org/10.1109/LPT.2007.905059
  2. K.-H. Yoon, K. R. Oh, K. S. Kim, J. H. Kim, and K. C. Kim, "Monolithically integrated tunable laser using doublering resonators with a tilted multimode interference coupler," IEEE Photon. Technol. Lett. 21, 851-853 (2009). https://doi.org/10.1109/LPT.2009.2019831
  3. A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, "Design and experimental evaluation of active-passive integrated microring lasers: noise properties," IEEE J. Quantum Electron. 48, 99-106 (2012). https://doi.org/10.1109/JQE.2011.2171672
  4. J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, "InP/InGaAsP flattened ring lasers with low-loss etched beam splitters," IEEE Photon. Technol. Lett. 23, 573-575 (2011). https://doi.org/10.1109/LPT.2011.2116777
  5. G. Testa, Y. Huang, P. M. Sarro, L. Zemi, and R. Bernini, "Integrated silicon optofluidic ring resonator," Appl. Phys. Lett. 97, 131110 (2010). https://doi.org/10.1063/1.3496027
  6. S. Suzuki, Y. Kokubun, M. Nakazawa, T. Yamamoto, and S. T. Chu, "Ultrashort optical pulse transmission characteristics of vertically coupled microring resonator add/drop filter," J. Lightwave Technol. 19, 266-271 (2001). https://doi.org/10.1109/50.917900
  7. H. Lee, G.-W. Kim, J.-O. Park, S.-H. Kim, and Y. Chung, "Widely tunable wavelength-selective reflector using polymer waveguide double-ring-resonator add/drop filter and loop-back mirror," J. Opt. Soc. Korea 12, 157-161 (2008). https://doi.org/10.3807/JOSK.2008.12.3.157
  8. L. Shang, L. Liu, and L. Xu, "Single-frequency coupled asymmetric microcavity laser," Opt. Lett. 33, 1150-1152 (2008). https://doi.org/10.1364/OL.33.001150
  9. J. W. Ryu and M. Hentschel, "Ray model and ray-wave correspondence in coupled optical microdisks," Physical Review A 82, 033824 (2010). https://doi.org/10.1103/PhysRevA.82.033824
  10. D. G. Kim, G. Y. Oh, W. K. Choi, H. J. Kim, S. H. Kim, H. C. Ki, S. T. Kim, H. J. Ko, T. U. Kim, M. H. Yang, H. J. Kim, N. Dagli, and Y. W. Choi, "Compact triangular resonator without direct coupling between two access waveguides," Electron. Lett. 44, 1192-1193 (2008). https://doi.org/10.1049/el:20082141
  11. M. W. Kim and P.-C. Ku, "Semiconductor nanoring lasers," Appl. Phys. Lett. 98, 201105 (2011). https://doi.org/10.1063/1.3592739
  12. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators," J. Lightwave Technol. 15, 2154-2165 (1997). https://doi.org/10.1109/50.641537
  13. W. Green, R. Lee, G. DeRose, A. Scherer, and A. Yariv, "Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control," Opt. Express 13, 1651-1659 (2005). https://doi.org/10.1364/OPEX.13.001651
  14. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavitis on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004). https://doi.org/10.1063/1.1833556
  15. A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, "Realization of a narrowband single wavelength microring mirror," Appl. Phys. Lett. 99, 091105-1-091105-3 (2011). https://doi.org/10.1063/1.3633111
  16. X. Zhang, H. Li, X. Tu, X. Wu, L. Liu, and L. Xu, "Suppression and hopping of whispering gallery modes in multiple-ring-coupled microcavity lasers," JOSA B 28, 483-488 (2011).
  17. X. Zhang, L. Ren, X. Wu, H. Li, L. Liu, and L. Xu, "Coupled optofluidic ring laser for ultrahigh-sensitive sensing," Opt. Express 19, 22242-22247 (2011) https://doi.org/10.1364/OE.19.022242
  18. X. Wu, H. Li, L. Liu, and L. Xu, "Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser," Appl. Phys. Lett. 93, 081105 (2008). https://doi.org/10.1063/1.2961025
  19. J.-W. Ryu, S.-Y. Lee, and S. W. Kim, "Coupled nonidentical microdisks: avoided crossing of energy levels and unidirectional far-field emission," Phys. Rev. A 79, 053858 (2009). https://doi.org/10.1103/PhysRevA.79.053858
  20. H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, "Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser," J. Am. Chem. Soc. 131, 16612-16613 (2009). https://doi.org/10.1021/ja9055728
  21. H. Li and X. Fan, "Characterization of sensing capability of optofluidic ring resonator biosensors," Appl. Phys. Lett. 97, 011105 (2010). https://doi.org/10.1063/1.3462296
  22. K. Djordjev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "High-Q vertically coupled InP microdisk resonators," IEEE Photon. Tech. Lett. 14, 331-333 (2002). https://doi.org/10.1109/68.986803
  23. K.-S. Hyun and H.-J. Moon, "Resonant characteristics of multimode interferometer coupled square ring semiconductor resonators," Opt. Express 18, 6382-6389 (2010). https://doi.org/10.1364/OE.18.006382
  24. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging principles and applications," J. Lightwave Technol. 13, 615-627 (1995). https://doi.org/10.1109/50.372474
  25. Y. Ma, S. Park, L. Wang, and S. T. Ho, "Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching," IEEE Photon. Technol. Lett. 12, 492-494 (2000). https://doi.org/10.1109/68.841263
  26. M. Kondow, T. Kitatami, K. Nakahara, and T. Tanaka, "Temperature dependence of lasing wavelength in a GaInNAs laser diode," IEEE Photon. Technol. Lett. 12, 777-779 (2000). https://doi.org/10.1109/68.853497

Cited by

  1. Lasing of Coupled Guided Modes in Modified Hollow Hexagonal Semiconductor Cavities vol.18, pp.4, 2014, https://doi.org/10.3807/JOSK.2014.18.4.377
  2. Analysis of dual coupler nested coupled cavities vol.56, pp.34, 2017, https://doi.org/10.1364/AO.56.009457
  3. Spectral Behaviors of Unidirectional Lasing from Various Semiconductor Square Ring Microcavities vol.73, pp.10, 2018, https://doi.org/10.3938/jkps.73.1506