DOI QR코드

DOI QR Code

Measurement of Fluorescence Correlation Function by Using Size and Concentration of Fluorescence Particles

형광입자들의 크기와 농도에 따른 형광 상관 분광함수 측정

  • Han, Yesul (Department of Physics, University of Ulsan) ;
  • Lee, Jaeran (Department of Physics, University of Ulsan) ;
  • Kim, Sok Won (Department of Physics, University of Ulsan)
  • Received : 2012.03.30
  • Accepted : 2012.05.29
  • Published : 2012.06.25

Abstract

The concentration and hydrodynamic radius of nano-sized fluorescence particles diffusing in solution were compared by using fluorescence correlation spectroscopy (FCS), which can measure the variation of the correlation function of a fluorescence signal by size and number of particles. The used nano-sized fluorescence particles are Alex Fluor 647, quantum dots, and fluorescence beads, and three kinds of sample solutions with different concentrations were prepared by dilution to 1/10 and 1/100 with distilled water for each kind of particles. The effective focal volumes were calculated by using the known diffusion coefficient of Alexa Fluor 647 particles, and the diffusion time, number of particles in focal volume, and variation of concentration according to the dilution could be measured by the FCS system. Through this study, we determined that the concentrations of arbitrarily diluted sample solutions can be measured by a home-built FCS setup in the range of 0.1 nM ~ 10 nM and that the diffusion coefficient of the quantum dot was $27{\pm}1{\mu}m^2/s$.

형광입자의 크기와 수에 따라 형광 신호의 상관함수 변화를 측정하는 형광상관분광법을 이용하여 용액 내에서 확산 운동하는 나노크기 형광 입자들의 농도와 유체역학적 반지름을 비교하였다. 시료에 사용된 나노크기 형광 입자들은 Alexa Fluor 647, 양자점, 형광 bead이고, 증류수에서 1/10, 1/100로 입자들이 들어있는 용액을 희석하여 각 입자들에 대해 3가지의 다른 농도의 시료를 준비하였다. Alex Fluor 647의 알려져 있는 확산시간을 이용하여 형광상관분광장치의 유효초점 부피를 구하고, 각 입자들의 확산계수, 크기, 희석에 따른 농도 변화를 측정할 수 있었다. 본 연구를 통해, 자체 제작된 형광상관분광장치로 임의적으로 희석된 시료들의 농도를 약 0.1 nM ~ 10 nM의 범위에서 측정할 수 있었고, 양자점의 확산계수를 $27{\pm}1{\mu}m^2/s$로 결정할 수 있었다.

Keywords

References

  1. S. H. Kim, T. Shin, and D. Kim, "Particles size measurement of silole nano-clusters by fluorescence correlation spectroscopy," J. Korean Phys. Soc. 56, 1264-1268 (2010). https://doi.org/10.3938/jkps.56.1264
  2. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999). https://doi.org/10.1016/S0006-3495(99)77065-7
  3. A. Einstein, "On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat," Ann. Phys. 17, 549-560 (1905).
  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer Science+Business Media, New York, USA, 2006), Chapter 24.
  5. P. Kask, P. Piksarv, M. Pooga, T. Mets, and E. Lippmaa, "Separation of the rotational contribution in fluorescence correlation experiments," Biophys. J. 55, 213-220 (1989). https://doi.org/10.1016/S0006-3495(89)82796-1
  6. J. A. Hodgdon and F. H. Stillinger, "Stokes-Einstein violation in glass-forming liquids," Phys. Rev. E 48, 207-213 (1993). https://doi.org/10.1103/PhysRevE.48.207
  7. K. Jacobson, E. D. Sheets, and R. Simson, "Revisiting the fluid mosaic model of membranes," Science 268, 1441-1442 (1995). https://doi.org/10.1126/science.7770769
  8. A. Cooper, Biophysical Chemistry (RSC, Cambridge, UK, 2005), Chapter 4.
  9. O. Krichevsky and G. Bonnet, "Fluorescence correlation spectroscopy: the technique and its applications," Rep. Prog. Phys. 65, 251-297 (2002). https://doi.org/10.1088/0034-4885/65/2/203
  10. R. Rieger, C. Rocker, and G. U. Nienhaus, "Fluctuation correlation spectroscopy for the advanced physics laboratory," Am. J. Phys. 73, 1129-1134 (2005). https://doi.org/10.1119/1.2074047
  11. P. Zhang, L. Li, C. Dong, H. Qian, and J. Ren, "Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy," Analytica Chimica Acta 546, 46-51 (2005). https://doi.org/10.1016/j.aca.2005.05.034
  12. K. Wang, X. Qiu, C. Dong, and J. Ren, "Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles," ChemBioChem 8, 1126-1129 (2007). https://doi.org/10.1002/cbic.200700174
  13. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, "Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration," ChemPhysChem 6, 2324-2336 (2005). https://doi.org/10.1002/cphc.200500414