DOI QR코드

DOI QR Code

Characterization and Gas-sensing Performance of Spray Pyrolysed In2O3 Thin Films: Substrate Temperature Effect

  • khatibani, A. Bagheri (Department of physics, faculty of science, Islamic Azad University) ;
  • Ziabari, A. Abdolahzadeh (Department of physics, faculty of science, Islamic Azad University) ;
  • Rozati, S.M. (Department of Physics, Faculty of Science, The University of Guilan) ;
  • Bargbidi, Z. (Department of Physics, Faculty of Science, The University of Guilan) ;
  • Kiriakidis, G. (IESL/FORTH and Department of Physics, University of Crete)
  • Received : 2012.01.15
  • Accepted : 2012.03.21
  • Published : 2012.06.25

Abstract

Spray pyrolysis method was applied for the preparation of indium oxide ($In_2O_3$) thin films, by varying the substrate temperature range from 400-$600^{\circ}C$. All the samples were characterized at room temperature by using X-Ray diffraction, Scanning electron microscopy, Atomic Force Microscopy, Hall Effect and UV-Visible spectrophotometry. The optimal substrate temperature required for obtaining films of high crystallographic quality was $575^{\circ}C$. By comparing optical transmittance and electrical conductivity it was observed that the best figure of merit for these films was achieved for the same temperature and electrical resistivity was in the order of ${\rho}=1.47{\times}10^{-1}[{\Omega}cm]$. Gas sensing measurements of the films in ethanol showed enhancement with surface roughness and sheet resistance.

Keywords

References

  1. G. Korotcenkov, A. Cerneavschi, V. Brinzari, A. Vasiliev, M. Ivanov, A. Cornet, J .Morante, A. Cabot and J. Arbiol, Sens. Actuators B. 99, 297(2004) [ http://dx.doi.org/10.1016/j.snb.2003.01.001].
  2. H. Ryu, J. Kang, Y. Han, D. Kim, J. J. Park, W. K. Park and M. S. Yang, J. Electron Mater 23, 919 (2003) [http://dx.doi.org/10.1007/s11664-003-0223-y].
  3. G. Korotcenkov, V. Brinzari, A. Cerneavschi, Sensors and Actuators B 98, 122 (2004) [http://dx.doi.org/10.1016/j.snb.2003.09.009].
  4. G. Kiriakidis, K. Moschovis, I. Kortidis, R. Skarvelakis, Journal of Sensors, V 2009 [http://dx.doi.org/10.1155/2009/727893].
  5. G. Kiriakidis, K. Moschovis, I. Kortidis, V. Binas, Vacuum [http://dx.doi.org/10.1016/j.vacuum.2011.10.013].
  6. K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films 102, 1 (1983) [http://dx.doi.org/10.1016/0040-6090(83)90256-0].
  7. C. G. Granqvist, Sol. Energy Mater. Sol. Cells 60, 201 (2000) [http://dx.doi.org/10.1016/S0927-0248(99)00088-4].
  8. J. A. Anna Selvan, A. E. Delahoy, S. Guo, Y. Li, Sol. Energy Mater. Sol. Cells 90, 3371 (2006) [http://dx.doi.org/10.1016/j.solmat.2005.09.018].
  9. J. R. Brown, P. W. Haycock, L. M. Smith, A. C. Jones, E. W. Williams, Sensors Actuators B 63, 109 (2000) [http://dx.doi.org/10.1016/S0925-4005(00)00306-3].
  10. N. Memarian, S. M. Rozati, E. Elamurugu, E. Fortunato, J. phys. Status solidi C 79, 2277 (2010) [http://dx.doi.org/10.1002/pssc.200983738].
  11. I. Kortidis, K. Moschovis, F. A. Mahmoud, G. Kiriakidis, Thin Solid Films 518, 1208 (2009). [http://dx.doi.org/10.1016/j.tsf.2009.08.018].
  12. J. Yu, S. Kang, J. Kim, J. Kim, J. Han, J. Yoo, S. Lee, and Z. Ahn, Materials Transactions 47,1838 (2006) [http://dx.doi.org/10.2320/matertrans.47.1838].
  13. S. Golshahi, S. M. Rozati, R. Martins, E. Fortunato, Thin Solid Films 518, 1149 (2009) [http://dx.doi.org/10.1016/j.tsf.2009.04.074].
  14. S. Boycheva, A. K. Sytchkova, M. L .Grilli, A. Piegari, Thin Solid Films 515, 8469 (2007) [http://dx.doi.org/10.1016/j.tsf.2007.03.165].
  15. G. Kiriakidis, M. Suchea, S. Christoulakis, P. Horvath, T. Kitsopoulos, J. Stoemenos, Thin Solid Films 515, 8577 (2007) [http://dx.doi.org/10.1016/j.tsf.2007.03.111].
  16. J. Joseph Prince, S. Ramamurthy, B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Journal of Journal of Crystal Growth 240, 142 (2002) [http://dx.doi.org/10.1016/S0022-0248(01)02161-3].
  17. S. M. Rozati, T. Ganj, Renew. Energy 29, 1665 (2004) [http://dx.doi.org/10.1016/j.renene.2004.01.007].
  18. G. Korotcenkov, M. Nazarov, M. V. Zamoryanskaya, M. Ivanov, Thin Solid Films 515, 8065 (2007) [http://dx.doi.org/10.1016/j.tsf.2007.03.186].
  19. S. Parthibab, V. Gokulakrishnan, K. Ramamurthi, E. Elangovan, R. Martins, E. Fortunato, R. Ganenan, Sol. Energy Mate. Sol. cells 93, 92 (2009) [http://dx.doi.org/10.1016/j.solmat.2008.08.007].
  20. A. ElHichou, A. Kachouance, J. L. Bubendorff, M. Addou, J. Ebothe, M. Troyon, A. Bougrine, Thin Solid Films 458, 263 (2004) [http://dx.doi.org/10.1016/j.tsf.2003.12.067].
  21. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003) [http://dx.doi.org/10.1002/anie.200351461].
  22. L. J. van der Pauw, Philips Res. Rep. 13, 1 (1958).
  23. L. J. van der Pauw, Philips Tech. Rev. 20, 220 (1958).
  24. A. Abdolahzadeh Ziabari, F. E. Ghodsi. J. Alloys Compd. 509, 8748 (2011) [http://dx.doi.org/10.1016/j.jallcom.2011.06.050].
  25. Y. Shigesato, S. Takaki, T. Haranoh, Appl. Surf. Sci. Technol. 269, 48 (1991) [http://dx.doi.org/10.1063/1.108703].
  26. G. Haack, J. Appl. phys. 47, 4086 (1976) [http://dx.doi.org/10.1063/1.323240].
  27. G. Mavrodiev, M. Gajdardziska and N. Novkovski, Thin Solid Films 113, 93 (1984) [http://dx.doi.org/10.1016/0040-6090(84)90018-X].
  28. G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov,A. Cornet, J. Morante, A. Cabot, J. Arbiol, Sensors and Actuators B 98, 122 (2004) [http://dx.doi.org/10.1016/j.snb.2003.09.009].
  29. G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golovanov, A. Cornet, J. Morante, A. Cabot, J. Arbiol, Thin Solid Films 460, 315 (2004) [http://dx.doi.org/10.1016/j.tsf.2004.02.018].
  30. A. Kaur Bal, A. Singh, R. K. Bedi, Physica B 405, 3124 (2010) [http://dx.doi.org/10.1016/j.physb.2010.04.029].

Cited by

  1. Synthesis and characterization of amorphous aluminum oxide thin films prepared by spray pyrolysis: Effects of substrate temperature vol.363, 2013, https://doi.org/10.1016/j.jnoncrysol.2012.12.013
  2. Correlation between the structural, morphological, optical, and electrical properties of In2O3thin films obtained by an ultrasonic spray CVD process vol.36, pp.8, 2015, https://doi.org/10.1088/1674-4926/36/8/082002
  3. Preparation, characterization, spectroscopic (FT-IR, FT-Raman, UV and visible) studies, optical properties and Kubo gap analysis of In2O3 thin films vol.1049, 2013, https://doi.org/10.1016/j.molstruc.2013.06.047
  4. Synthesis and gas sensing behavior of nanostructured V2O5 thin films prepared by spray pyrolysis vol.29, 2015, https://doi.org/10.1016/j.mssp.2014.01.008
  5. Comparison of gas sensing properties of spray pyrolysed VOx thin films vol.26, pp.7, 2015, https://doi.org/10.1007/s10854-015-3026-z
  6. Peculiarities of Deposition Times on Gas Sensing Behaviour of Vanadium Oxide Thin Films vol.129, pp.6, 2016, https://doi.org/10.12693/APhysPolA.129.1245
  7. Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties vol.63, pp.1, 2017, https://doi.org/10.1016/j.pcrysgrow.2016.12.001
  8. Synthesis and characterization of nanostructure CdO:Zn thin films deposited by spray pyrolysis technique: Molarity and heat treatment effects vol.16, pp.3, 2013, https://doi.org/10.1016/j.mssp.2013.02.007
  9. Indium Oxide Thin-Film Transistors Processed at Low Temperature via Ultrasonic Spray Pyrolysis vol.7, pp.1, 2015, https://doi.org/10.1021/am5072139
  10. MEMS based tin oxide thin film gas sensor for diabetes mellitus applications pp.1432-1858, 2019, https://doi.org/10.1007/s00542-018-4158-x
  11. A Comparative Study of Gas Sensing Properties of Tungsten Oxide, Tin Oxide and Tin-Doped Tungsten Oxide Thin Films for Acetone Gas Detection vol.48, pp.3, 2019, https://doi.org/10.1007/s11664-018-06881-1