참고문헌
- J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79 (1982), 2554-2558. https://doi.org/10.1073/pnas.79.8.2554
- J. Hopfield, Neurons with graded response have collective computational properties like those of two-stage neurons, Proc. Natl. Acad. Sci. USA 81 (1984), 3088-3092. https://doi.org/10.1073/pnas.81.10.3088
- B. Liu, L. Huang, Existence and exponential stability of almost periodic solutions for Hopfield neural networks with delays, Neurocomputing 68 (2005), 196-207. https://doi.org/10.1016/j.neucom.2005.05.002
- Q. Dong, K. Matsui, X. Haung, Existence and stability of periodic solutions for Hopfield neural network equations with periodic input, Nonlinear Anal. TMA 49 (2002), 471-479. https://doi.org/10.1016/S0362-546X(01)00113-4
- X. Li, Z. Chen, Stability properties for Hopfield neural networks with delays and impulsive perturbations, Nonlinear Anal. RWA 10 (2009), 3253-3265. https://doi.org/10.1016/j.nonrwa.2008.10.028
- X. Fu, X. Li, Global exponential stability and global attractivity of impulsive Hopfield neural networks with time delays, J. Comput. Appl. Math. 231 (2009), 187-199. https://doi.org/10.1016/j.cam.2009.02.094
- Z. Gui, W. Ge, X. Yang, Periodic oscillation for a Hopfield neural networks with neutral delays, Phys. Lett. A 364 (2007), 267-273. https://doi.org/10.1016/j.physleta.2006.12.013
- H. Zhao, Global asymptotic stability of Hopfield neural network involving distributed delays, Neural Networks 17 (2004), 47-53. https://doi.org/10.1016/S0893-6080(03)00077-7
- P. Shi, L. Dong, Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses, Appl. Math. Comput. 216 (2010), 623-630.
- L. Huang, J.Wang, X. Zhou, Existence and global asymptotic stability of periodic solutions for Hopfield neural networks with discontinuous activations, Nonlinear Anal. RWA 10 (2009), 1651-1661. https://doi.org/10.1016/j.nonrwa.2008.02.022
- C. Bai, Existence and stability of almost periodic solutions of Hopfield neural networks with continuously distributed delays, Nonlinear Anal. TMA 71 (2009), 5850-5859. https://doi.org/10.1016/j.na.2009.05.008
- J. Cao, A. Chen, X. Huang, Almost periodic attraction of delayed neural networks with variable coefficients, Phys. Lett. A 340 (2005), 104-120. https://doi.org/10.1016/j.physleta.2005.04.021
- R. Rakkiyappan, P. Balasubramaniam, J. Cao, Global exponential stability results for neutral-type impulsive neural networks, Nonlinear Anal. RWA 11 (2010), 122-130. https://doi.org/10.1016/j.nonrwa.2008.10.050
- P. Balasubramaniam, S. Lakshmanan, Delay-range dependent stability criteria for neural networks with Markovian jumping parameters, Nonlinear Anal. Hybrid Syst. 3 (4) (2009), 749-756. https://doi.org/10.1016/j.nahs.2009.06.012
- S. Lakshmanan, P. Balasubramaniam, New results of robust stability analysis for neutral type neural networks with time-varying delays and Markovian jumping parameters, Canad. J. Phys. 89 (2011), 827-840 . https://doi.org/10.1139/p11-059
- Z. Wang, Y. Liu, X. Liu, On global asymptotic stability of neural networks with discrete and distributed delays, Phys. Lett. A 345 (2005), 299-308. https://doi.org/10.1016/j.physleta.2005.07.025
- Z. Wang et al., The existence and uniqueness of periodic solutions for a kind of Duffingtype equation with two deviating arguments, Nonlinear Anal. TMA 73 (2010), 3034-3043. https://doi.org/10.1016/j.na.2010.06.071
- G. Wang, J. Cao, L. Wang, Global dissipativity of stochastic neural networks with time delay, J. Franklin Inst. 346 (2009) 794-807. https://doi.org/10.1016/j.jfranklin.2009.04.003
- J. Qiu, J. Cao, Delay-dependent exponential stability for a class of neural networks with time delays and reaction-diffusion terms, J. Franklin Inst. 346 (2009), 301-314. https://doi.org/10.1016/j.jfranklin.2008.11.002
- G.T. Stamov, I.M. Stamova, Almost periodic solutions for impulsive neural networks with delay, Appl. Math. Model. 31 (2007), 1263-1270. https://doi.org/10.1016/j.apm.2006.04.008
- I.M. Stamova, G.T. Stamov, Impulsive control on global asymptotic stability for a class of impulsive bidirectional associative memory neural networks with distributed delays, Math. Comput. Model. 53 (2011), 824-831. https://doi.org/10.1016/j.mcm.2010.10.019
- S. Mohamad, Exponential stability in Hopfield-type neural networks with impulses, Chaos Solitons Fractals 32 (2007), 456-467. https://doi.org/10.1016/j.chaos.2006.06.035
- Z. Huang, S. Mohamad, C. Feng, New results on exponential attractivity of multiple almost periodic solutions of cellular neural networks with time-varying delays, Math. Comput. Model. 52 (2010), 1521-1531. https://doi.org/10.1016/j.mcm.2010.06.013
- S. Mohamad, K. Gopalsamy, H. Akca, Exponential stability of artificial neural networks with distributed delays and large impulses, Nonlinear Anal. RWA 9 (2008), 872-888. https://doi.org/10.1016/j.nonrwa.2007.01.011
- O.M. Kwon, J.H. Park, S.M. Lee, On stability criteria for uncertain delay-differential systems of neutral type with time-varying delays, Appl. Math. Comput. 197 (2008), 864-873.
- J.H. Park, O.M. Kwon, LMI optimization approach on stability for delayed neural networks of neutral-type, Appl. Math. Comput. 196 (2008), 236-244.
- B. Xiao, Existence and uniqueness of almost periodic solutions for a class of Hopfield neural networks with neutral delays, Appl. Math. Lett. 22 (2009), 528-533. https://doi.org/10.1016/j.aml.2008.06.025
- A.M. Fink, Almost Periodic Differential Equations, in: Lecture Notes in Mathematics, vol. 377, Springer, Berlin, 1974, pp. 80-112.
- C.Y. He, Almost Periodic Differential Equation, Higher Education Publishing House, Beijing, 1992, pp. 90-100 (in Chinese).