DOI QR코드

DOI QR Code

ON THE CRITICAL GROUP OF $\hat{W}_{4n}$

  • Raza, Zahid (Department of Mathematics, National University of Computer & Emerging Sciences) ;
  • Waheed, Seemal Abdul (Department of Mathematics, National University of Computer & Emerging Sciences)
  • Received : 2012.01.09
  • Accepted : 2012.03.14
  • Published : 2012.09.30

Abstract

The family of graphs $\hat{W}_{4n}$ is defined by taking the simple whee graph $W_{n+1}$ with $n$ rim vertices and then adding three extra vertices on every rim edge of the wheel. In this paper, the critical group of this whole family of graphs is investigated.

Keywords

References

  1. C. A. Alfaro and C. E. Valencia, On the sandpile group of the cone of the hypercube, preprint 2010. ArXiv: math/10041v1.
  2. N. L. Biggs, Chip-Firing and the critical group of a graph , J. Algebr.Comb. Vol. 9(1999), No.1, 25 - 45. https://doi.org/10.1023/A:1018611014097
  3. N. L. Biggs, The critical group from a cryptographic perspective , Bull. london Math. Soc. Vol. 39(2007), No.5, 829 - 836. https://doi.org/10.1112/blms/bdm070
  4. P. Bak, C. Tang and K. Wiesenfeld, Self-organized criticality , Phy. Rev.A. Vol. 38(1988), No.1, 364 - 374. https://doi.org/10.1103/PhysRevA.38.364
  5. D. M. Cvetkovic and I. Gutman, A new spectral method for determining the number of spanning trees , Pub. De l'institut Mathematique Nouvelle serie, tome. Vol. 29(1981), No.43, 49 - 52.
  6. P. G. Chen, Y. P. Hou and C. W. Woo, On the critical group of the Mobius ladder graph , Aust. J. Combin. Vol. 36(2006), 133 - 142.
  7. H. Christianson and V. Reiner, The critical group of a threshold graph , Linear Algebra Appl. Vol. 349(2002), 233 - 244. https://doi.org/10.1016/S0024-3795(02)00252-5
  8. R. Cori and D. Rossin, On the sandpile group of dual graphs , European J. Comb. Vol. 21(2000), No.4, 447 - 459. https://doi.org/10.1006/eujc.1999.0366
  9. A. Dartois, F. Fiorenzi and P. Francini, Sandpile group on the graph $D_n$ of the dihedral group , European J. Comb. Vol. 24(2003), No.7, 815 - 824. https://doi.org/10.1016/S0195-6698(03)00104-5
  10. D. Dhar, P. Ruelle, S. Sen and D.N. Verma, Alegbraic aspects of abelian sandpile models , Phy. Rev.A. Vol. 28(1995), No.4, 805 - 831.
  11. C. Codsil and G. Royle, Algebraic Graph Theory, GTM 207, Springer-Verlag, New York, 2001.
  12. Y. P. Hou, C. W. Woo and P. Chen, On the sandpile group of the square Cycle $C^2_n$ , Linear Algebra Appl. Vol. 418(2006), No.2-3, 457 - 467. https://doi.org/10.1016/j.laa.2006.02.022
  13. Y. P. Hou, T. Lei and C. W. Woo, On the sandpile group of the square Cycle $K_3{\times}C_n$, Linear Algebra Appl. Vol. 428(2008), 1886 - 1898. https://doi.org/10.1016/j.laa.2007.10.033
  14. B. Jacobson, A. Niedermaier and V. Reiner, Critical groups for complete multipartite graphs and cartesian products of complete graphs , J. Graph Theory. Vol. 44(2003), No.3, 231 - 250. https://doi.org/10.1002/jgt.10139
  15. D.J. Lorenzini, Arithmetical graphs , Math. Ann. Vol. 285(1989), 481 - 501. https://doi.org/10.1007/BF01455069
  16. D.J. Lorenzini, A finite group attached to the Lapacian of a graph , Discrete Math. Vol. 91(1990), No.3, 277 - 282. https://doi.org/10.1016/0012-365X(90)90236-B
  17. H. Liang, Y. L. Pan and J. Wang, The critical group of $K_m{\times}P_n$, Linear Algebra Appl. Vol. 428(2008), 2723 - 2729. https://doi.org/10.1016/j.laa.2008.01.002
  18. G. Musiker, The critical groups of a family of graphs and elliptic curves over finite fields, J. Algebr Comb. Vol. 30(2009), No.2, 255 - 276. https://doi.org/10.1007/s10801-008-0162-z
  19. J. Shen and Y. Hou, On the sandpile group of $3{\times}n$ twisted bracelets, Linear Algebra Appl. Vol. 429(2008), No.8-9, 1894 - 1904. https://doi.org/10.1016/j.laa.2008.05.021