한강을 원수로 하는 오존/과산화수소 고도정수처리공정에서의 MIB제거 및 잔류오존 농도에 관한 연구

Use of Hydrogen Peroxide with Ozone to Simultaneously Reduce MIB and Quench Ozone Residual in Existing Water Treatment Plants Sourcing Water from the Han River

  • 발행 : 2012.09.30

초록

본 논문은 California의 South Lake Tahoe, 서울 뚝섬정수장 그리고 성남 복정정수장에서 2010년 2월에서 2012년 2월까지 수행된 파일럿 실험에 대한 분석결과를 기초로 작성되었다. 본 실험의 목적은 첫째, 한강을 원수로 하는 모래여과 처리수에 대한 오존 및 과산화수소(Peroxone)의 반응특성을 파악하고, 둘째는 AOP(고도산화공정)을 통해 맛 냄새 유발물질인 2-methylisoborneol(MIB)를 제거하기위한 경험적인 오존 및 과산화수소의 투입량을 결정하고자 하였다. 또한 셋째로, 처리공정이후 인체에 안전한 잔류오존농도로 감소시키기 위한 최적 투입량을 결정하고자 하였다. 본 실험은 계절의 기온변화에 따라 저수온 및 고수온의 조건하에서 실시간으로 수행되었다. 본 실험을 통해 오존의 분해속도는 온도와 pH에 영향을 받는 것으로 나타났으며, 이는 다른 연구결과와 일치한다. 원수로 모래여과수에 MIB를 40~50ng/L의 농도로 투입하였으며, 모든 경우에서 7ng/L 이하로 처리되었으며 대부분의 경우에서 검출(ND)되지 않았다. Peroxone은 MIB을 제거할 뿐아니라 오존을 단독으로 사용한 경우보다 오존+과산화수소 동시에 투입한 경우에 잔류오존농도가 더 낮았다. 저수온에서 상당량의 오존이 반응 및 분해를 통해 감소된다. 본 실험을 통해 "Pre-Conditioned" 과산화수소를 적용함으로써 초기 반응율을 향상시키고 잔류오존농도를 낮출 수 있었으며, 약품의 과투입 및 효율저하를 방지하는 과산화수소의 투입 위치 및 구성 그리고 투입방법을 제시하였다.

This paper provides a detailed account of pilot testing conducted at South Lake Tahoe (California), the Ddukdo (Seoul) water treatment plant (WTP) and the Bokjung (Seongnam) WTP between February, 2010, and February, 2012. The objectives were first, to characterize the reactions of ozone with hydrogen peroxide (Peroxone) for Han River water following sand filtration, second to determine empirical ozone and hydrogen peroxide doses to remove a taste-and-odor surrogate 2-methylisoborneol (MIB) using an advanced oxidation process (AOP) configuration and third, to determine the optimum dosing configuration to reduce residual ozone to a safe level at the exit of the process. The testing was performed in a real-time plant environment at both low- and high seasonal water temperatures. Experimental results including ozone decomposition rates were dependent on temperature and pH, consistent with data reported by other researchers. MIB in post-sand-filtration water was spiked to 40-50 ng/L, and in all cases, it was reduced to below the specified target level (7 ng/liter) and typically non-detect (ND). It was demonstrated that Peroxone could achieve both MIB removal and low effluent ozone residual at ozone+hydrogen peroxide doses less than those for ozone alone. An empirical predictive model, suitable for use by design engineers and operating personnel and for incorporation in plant control systems was developed. Due to a significant reduction in the ozone reaction/decomposition at low winter temperatures, results demonstrate the hydrogen peroxide can be "pre-conditioned" in order to increase initial reaction rates and achieve lower ozone residuals. Results also indicate the method, location and composition of hydrogen peroxide injection is critical to successful implementation of Peroxone without using excessive chemicals or degrading performance.

키워드

참고문헌

  1. Cummings, L., Pasquariello, L. and Mahoney, S. (2007). "Case Study: Experience with Ozone Disinfection at the Little Falls Water Treatment Plant," Proceedings of the Water Environment Federation, Disinfection 2007, Pittsburgh, PA, pp. 719-725.
  2. Duguet, J. P., Brodard, E., Dussert, B. and Mallevialle, J. (1985). "Improvement in the Effectiveness of Ozonation of Drinking Water Through the Use of Hydrogen Peroxide," Ozone Science and Engineering, 7, pp. 241-257. https://doi.org/10.1080/01919518508552366
  3. Fabian,, I. (2006). "Reactive intermediates in aqueous ozone decomposition: A mechanistic approach," Pure Applied Chemistry, 78(8), pp. 1559-1570. https://doi.org/10.1351/pac200678081559
  4. Ferguson, D. W., McGuire, M. J., Koch, B., Wolfe, R. L. and Aieta, E. M. (1990). "Comparing Peroxone and Ozone for Controlling Taste and Odor Compounds, Disinfection Byproducts, and Microorganisms," Journal of the AWWA, 82(4), pp. 181-191. https://doi.org/10.1002/j.1551-8833.1990.tb06950.x
  5. Glaze, W. H. (1987). "Drinking-Water Treatment With Ozone," Environmental Science Technology, 21, pp. 224-230. https://doi.org/10.1021/es00157a001
  6. Hwang, T. M. and Oh, H. J. (2007). "Characteristics of Raw Water Quality and Appropriate Drinking Water Treatment Process in Korea," The Fourth Joint Seminar between IWHR-KICT, July 16.
  7. Langlais, B., Reckhow, D. A., and Brink, D. R. (1991). Ozone in Water Treatment: Applications and Engineering, AWWA Research Foundation and Compagnie Generale des Eaux, Lewis Publishers, MI.
  8. Lenntech: (http://www.lenntech.com/library/ozone/decomposition/ozone-decomposition.htm).
  9. McGuire, M. J. and Davis, M. K. (1988). "Treating Water with Peroxone: A Revolution in the Making," Water Engineering & Management, pp. 42-49.
  10. Meyer, R. M., Mazzei, A. L., and Overbeck, P. (2000). "The Effect of Ozone Demand on Mass Transfer Efficiency and Its Importance to In-Line Ozone Contactor Design," Proceedings of the International Ozone Association/Pan American Group Conference, Orlando, FL, October 1-4.
  11. Park, H. S., Hwang, T. M., Kang, J. W., Choi, H. C., and Oh, H. J. (2001). "Characterization of Raw Water for the Ozone Application Measuring Ozone Consumption Rate," Water Research, 35(11), pp. 2607-2614. https://doi.org/10.1016/S0043-1354(00)00564-9
  12. Phares, D. E., Rokjer, D. M., Crossley, I. A., and Franko, J. J. (2009). "Modeling and Validating the Effective Hydraulic Detention Time for a 10 mgd Ozone Contactor at the Lake Washington Surface Water Treatment Plant, Melbourne, Florida," Ozone Science and Engineering, 31(3), pp. 262-276. https://doi.org/10.1080/01919510902904529
  13. Robinson, B. K. (2007). "Surface Water Treatment Plant Optimization to Enhance Removal of Taste & Odor Compounds and Achieve Multi-Barrier Treatment," Proceedings of the International Water Technology Conference & Ozone V, Fresno, CA, April 2-4.
  14. Salveson, A. T. and Narayanan, B. (2004). Preliminary Evaluation of the $HiPOx^{TM}$ System, Final Research Report for Applied Process Technology, Inc. by Carollo Engineers, Walnut Creek, CA, May 1.
  15. Staehelin, J. and Hoigne, J. (1985). "Decomposition of ozone in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions," Environmental Science and Technology, 19, pp. 1206-1213. https://doi.org/10.1021/es00142a012
  16. Suffet, I. H., Corado, A., Chou, D., McGuire, M. J., and Butterworth, S. (1996). "AWWA Taste and Odor Survey," Journal American Water Works Association, 88(4), pp. 168-180. https://doi.org/10.1002/j.1551-8833.1996.tb06542.x
  17. Zhou, H. and Smith, D. W. (2002). "Advanced technologies in water and wastewater treatment," Journal of Environmental Engineering Science, 1, pp. 247-264. https://doi.org/10.1139/s02-020