Evaluation of the Possibility of Daily Flow Data Generation from 8-Day Interval Measured Flow Data using SWAT-CUP

SWAT-CUP을 이용한 8일간격 유량측정자료의 일유량 확장 가능성 평가

  • Jung, Jaewoon (Yeongsan River Environment Research Laboratory, National Institute of Environmental Research) ;
  • Cho, Sohyun (Yeongsan River Environment Research Laboratory, National Institute of Environmental Research) ;
  • Lim, Byungjin (Yeongsan River Environment Research Laboratory, National Institute of Environmental Research) ;
  • Oh, Taeyoun (Yeongsan River Environment Research Laboratory, National Institute of Environmental Research) ;
  • Ham, Sangin (Yeongsan River Environment Research Laboratory, National Institute of Environmental Research) ;
  • Kim, Kapsoon (Yeongsan River Environment Research Laboratory, National Institute of Environmental Research)
  • 정재운 (국립환경과학원 영산강물환경연구소) ;
  • 조소현 (국립환경과학원 영산강물환경연구소) ;
  • 임병진 (국립환경과학원 영산강물환경연구소) ;
  • 오태윤 (국립환경과학원 영산강물환경연구소) ;
  • 함상인 (국립환경과학원 영산강물환경연구소) ;
  • 김갑순 (국립환경과학원 영산강물환경연구소)
  • Published : 2012.07.30

Abstract

This study is to assess the application of SWAT-CUP(Soil and Water Assessment Tool-Calibration Uncertainty Programs) and to extend daily flow data from 8-day interval flow data which has been measured by Korean Ministry of Environment(MOE). Model sensitivity analysis and calibration were performed with sequential uncertainty fitting(SUIF-2), which is one of the programs interfaced with SWAT, in the package SWAT-CUP. The most sensitive parameters were SOL_K.sol, CH_N2.rte, CN2.mgt, SOL_BD.sol, ALPHA_BF.gw, ALPHA_BNK.rte, SOL_AWC.sol, CH_K2.rte, SFTMP.bsn, GW_DELAY.gw. Following the sensitivity analysis, SWAT-CUP calibration was carried out using 8-day interval flow data from January 2008 to December 2010. The results were then assessed based on the visual agreement and simulated flow plots and the performance statistics generated $R^2$ and NSE which are 0.71 and 0.61 respectively. Results of these statistics indicated that there was a good agreement between the observed and simulated flow. To extend daily flow data from 8-day interval flow data, parameters, which were estimated by SWAT-CUP, re-entered for SWAT model. As a result, the observed flow data were found to reflect the trend of simulated flow data. From these results, it is thought that this method could be used to provide daily flow data using 8-day interval flow data.

Keywords

References

  1. 김남원, 신아현, 김철겸(2009). 충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석, 한국환경과학회지, 18(6), pp. 609-619.
  2. 김남원, 이병주, 이정은(2007). 공간모의유량을 이용한 갈수량 거동 특성에 관한 연구, 대한토목학회논문집, 23(4B), pp. 431-440.
  3. 김상단, 강두기, 김문수, 신현석(2007). 유역모형 구축을 위한 8일간격 유량측정자료의 일유량 확장 가능성, 수질보전 한국물환경학회지, 23(1), pp. 64-71.
  4. 김상단, 이건행, 김형수(2005). 장기유출 수문모형을 이용한 하천수질모형의 기준유량 산정, 수질보전 한국물환경학회지, 21(6), pp. 575-583.
  5. 류지철, 강현우, 최재완, 공동수, 금동혁, 장춘화, 임경재(2012). 소양강댐 유역의 유출 자동보정을 위한 SWAT-CUP의 적용 및 평가, 수질보전 한국물환경학회지, 28(3), pp. 347-358.
  6. 박민지, 신형진, 박근애, 김성준(2010). SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가, 대한토목학회논문집, 30(4B), pp. 337-346.
  7. 박종윤, 이미선, 이용준(2008). SWAT 모형을 이용한 미래 토지이용변화가 수문-수질에 미치는 영향 분석, 대한토목학회논문집, 28(2), pp. 187-197.
  8. 백경오, 임동희(2012). 8일 간격으로 부분 계측된 유량을 연속 일유량으로 확장하는 방법, 한국수자원학회지, 45(1), pp. 91-99
  9. 손경호, 이혜숙, 김정곤(2006). SWAT과 HSPF 모델을 이용한 용담댐 유역 유출량과 유사량 분석, 대한상하수도학회.한국물환경학회 2006년 공동 추계학술발표회 논문집, 대한상하수도학회.한국물환경학회, pp. 738-746.
  10. 신현석, 강두기, 김상단(2007). 낙동강유역 SWAT 모형 구축 및 물수지 시나리오에 따른 유황분석, 한국수자원학회논문집, 40(3), pp. 251-263.
  11. 이길성, 정은성, 신문주(2006). SWAT 모형을 이용한 도시하천 상류유역의 하천유지유량 산정방안, 한국수자원학회논문집, 39(8), pp. 703-716.
  12. 이용준, 박종윤, 박민지(2008). SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문-수질 변화 분석(I), 대한토목학회논문집, 28(6), pp. 653-663.
  13. 이은형, 서동일(2011). SWAT-CUP을 이용한 대청호 유역 장기 유출 유량 보정 및 검증, 한국수자원학회논문집, 44(9), pp. 711-720.
  14. 정재운, 윤광식, 한국헌(2009). 주암호 소유역의 영양물질 부하 추정을 위한 SWAT 모형의 적용성 평가, 한국환경과학회지, 18(9), pp. 1027-1033.
  15. 환경부(2009). 한강수계 오염총량관리계획 수립지침. pp. 3.
  16. Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., Srinivasan, R. (2007). Modeling Hydrology and Water Quality in the Pre-alpine/alpine Thur Watershed using SWAT, Journal of Hydrology, 333, pp. 413-430. https://doi.org/10.1016/j.jhydrol.2006.09.014
  17. Chung, S. W., Gassman, P. W., Kramer, L. A., Williams, J. R., and Gu, R. (1999). Validation of EPIC for Two Watersheds in Southwest Iowa, Journal of Environmental Quality, 28(3), pp. 971-979.
  18. Gong, Y., Shen, Z., Hong, Q., Liu, Q., and Liao, Q. (2011). Prameter Uncertainty Analysis in Watershed Total Phosphorus Modeling using the GLUE Methodology, Agriculture, Ecosystems and Emvironment, pp. 246-255. https://doi.org/10.1016/j.agee.2011.05.015
  19. Green, C. H., Tomer, M. D., Di Luzio, M., and Arnold, J. G. (2006). Hydrologic Evaluation of the Soil and Water Assessment Tool for a Large Tile-drained Watershed in Iowa, Transactions of the ASAE, 49(2), pp. 413-422.
  20. Masih, I., Maskey, S., Uhlenbrook, S., and Smakhtin, V. (2011). Assessing the Impact of Areal Precipitation Input on Streamflow Simulations using the SWAT Model, Journal of the American Water Resources Association, 47(1), pp. 179-194. https://doi.org/10.1111/j.1752-1688.2010.00502.x
  21. Ranamarayanan, T. S., Williams, J. R., Dugas, W. A., Heuck, L. M., and McFarland, A. M. S. (1997). Using APEC to Identify Alternative Practiced for Animal Waste Management, Minneapolis, MN, ASAE Paper, No. 97-2209.
  22. Rostamian, R., Jaleh, A., Afyuni, M., Mousavi, S. F., Heidarpour, M., Jalalian, A., and Abbaspour, K. C. (2008). Application of a SWAT Model for Estimating Runoff and Sediment in Two Mountainous Basins in Central Iran, Journal of Hydrological Sciences, 53(5), pp. 977-988. https://doi.org/10.1623/hysj.53.5.977
  23. Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., and Hauck, L. (2001a). Validation of the SWAT Model on a Large River Basin with Point and Nonpoint Sources, Journal of the American Water Resources Association, 37(5), pp. 1169-1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  24. Tang, F. F., Xu, H. S., and Xu, Z. X. (2012). Model Calibration and Uncertainty Analysis for Runoff in the Chao River Basin using Sequential Uncertainty Fitting, Procedia Environmental Sciences, 13, pp. 1760-1770. https://doi.org/10.1016/j.proenv.2012.01.170