DOI QR코드

DOI QR Code

자기분리가 가능한 지르코늄 자성 흡착제의 합성과 인 흡착 특성

Synthesis and Phosphorus Adsorption Characteristics of Zirconium Magnetic Adsorbent Having Magnetic Separation Capability

  • 임대석 (세명대학교 바이오환경공학과) ;
  • 김은형 (세명대학교 바이오환경공학과) ;
  • 김동락 (기초과학지원연구원 고자기장연구팀) ;
  • 이태구 (세명대학교 건축공학과) ;
  • 임학상 (세명대학교 바이오환경공학과)
  • 발행 : 2012.06.15

초록

The purpose of this study, is to separate magnetic separation devices using permanent magnets by using magnetization characteristics remaining in treated water after adsorption and synthesizing phosphorus adsorbent capable of magnetic separation for efficient removal of phosphorus. The synthesis of the adsorbent which set Zirconium(Zr) having high friendly features for phosphorus as an element, and by synthesizing Iron Oxide($Fe_3O_4$, another name of $Fe_3O_4$ is magnetite) being able to grant magnetism to Zirconium Sulfate($Zr(SO_4)_2$), zirconium magnetic adsorbent(ZM) were manufactured. In order to consider the phosphorus adsorption characteristics of adsorbent ZM, batch adsorption experiment was performed, and based on the results, pH effect, adsorption isotherm, adsorption kinetics, and magnetic separation have been explore. As the experiment result, adsorbent ZM showed a tendency that the adsorption number was decreased rapidly at pH 13; however, it was showed a high amount of phosphorus removal in other range and it showed the highest amount of phosphorus removal in pH 6 of neutral range. In addtion, the Langmuir adsorption isotherm model is matched well, and D-R adsorption isotherm model is ranged 14.43kJ/mol indicating ion exchange mechanism. The result shown adsorption kinetics match well to the Pseudo-second-order kinetic model. The adsorbent ZM's capablility of regenerating NaOH and $H_2SO_4$, was high selectivity on the phosphorus without impacts on the other anions. The results of applying the treated water after adsorption of phosphorus to the magnetic separation device by using permanent magnets, shows that capture of the adsorbent by the magnetization filter was perfect. And they show the possibility of utilization on the phosphorus removal in water.

키워드

참고문헌

  1. 황규대, 김민호, 조철휘 (1997) 철의 전기분해를 이용한 활성슬러지 공정에서 돈사폐수의 인 제거 및 질산화, 대한환경공학회지, 19(10). pp. 1333-1344.
  2. 김종석 ( 1998) 굴껍질의 정석반응을 이용한 하수중의 인 제거에 관한 연구, 석사학위논문, 서울시립대학교.
  3. 곽종운 ( 2000) 물리 화학적 수처리 원리와 응용, pp. 219-230, 성안당.
  4. 이의상 ( 2004) 부산석회 Core의 인 제거 특성, 한국폐기물학회지, 21(8), pp. 802-807.
  5. 이승 학, 이관용, 이상협, 최용수(2006) 지르코늄 메조구조체의 합성조건 변화에 따른 인 흡착 특성, 대한환경공학회지, 28(6), pp. 583-587.
  6. 이상협 ( 2007) 수중의 인 회수 및 재생을 위한 고선택성, 고효율 이온교환 소재 개발에 관한 연구, 환경부, 차세대핵심환경기술개발사업 최종보고서.
  7. 정우식, 지민규, 이상훈, Eva Kumar, Amit Bhatnagar, 김선준, 전병훈(2008), FH (Granular Ferric Hydroxide)를 이용한 불소 흡착연구, 한국지구시스템공학회지, 45, pp. 441-447.
  8. 오원재 ( 2010) 자기장을 이용한 Phthalocyanine의 고도분리. 석사학위논문, 세명대학교.
  9. 남성찬, 박성열, 윤여일, 정순관 (2010) 수열합성법과 고상법을 이용해 제조된 Zn-ferrite 분말의 이산화탄소 분해 특성, Appl. Chem. Eng., 22(5), pp. 555-561.
  10. 조영민, 전병희, 박찬진 (2011) 하천 및 하.폐수 처리장에서 인의 회수 및 재활용 기술 동향, 공업화학 전망, 14(5), pp. 1-11.
  11. 이은실, 최창민 (2011) 생물학적 인 제거기술 동향 및 발전 방향, 공업화학 전망, 14(5), pp. 30-37.
  12. 김진한, 전세진 (2011) 하.폐수 중의 인 제거기술, 공업화학 전망, 14(5), pp. 12-21.
  13. Dubinin , M. M., Zaverina, E.D. and Radushkevich, L.V. (1947) Sorption and structure of active carbons. I. Adsorption of organic vapors, Zhurnal Fizicheskoi Khimii, 21, pp. 1351-1362.
  14. Freundl ich H. M. F. (1906) Over the adsorption in solution, J. Physical Chemistry, 57, pp. 385-470.
  15. Ishiwat a T., Miura O., Hosomi K., Shimizu K., Ito D., Yoda Y. (2010) Removal and recovery of phosphorus in wastewater by superconducting high gradient magnetic separation with ferromagnetic adsorbent, Physica C: Superconductivity, 470(20), pp. 1818-1821. https://doi.org/10.1016/j.physc.2010.05.214
  16. Treybal R. E. (1981) Mass-Transfer Operations, 3rd ed., McGraw Hill, New York.
  17. Langmu ir I. (1918) The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc, 40, pp. 1361-1403. https://doi.org/10.1021/ja02242a004
  18. Weber J . J. (1972) Adsorption in Physicochemical Processes for Water Quality Control, Wiley Interscience, NY In Metcalf R. L. and Pitts, J. N. (Eds.), pp. 199-259.
  19. Stum m, W., Morgan, J. J. (1981) Aquatic Chemistry, 2nd ed.. Wiley interscience, John Wiley & Sons.
  20. Ahmad Shujaat, Khalid Nasir, Daud Muhammad (2002) Adsorption studies of lead on lateritic minerals from aqueous media, Separation Science and Technology, l37(2), pp. 213-224.
  21. Lagergr en, S. (1898) About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsakademins Handlingar, 24, pp. 1-39.
  22. Ho Y. S ., and McKay G. (1998) The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, pp. 822-827. https://doi.org/10.1002/cjce.5450760419
  23. Weber W . J., Morris J. C. (1963) Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. ASCE, 89, pp. 31-59.
  24. Honglei Liu, Xiaofei Sun, Chengqing Yin, Chun Hu (2008) Removal of phosphate by mesoporous ZrO2, Journal of Hazardous Materials, 151, pp. 616-22. https://doi.org/10.1016/j.jhazmat.2007.06.033

피인용 문헌

  1. 폐수처리 분야에서 자기 분리기술의 응용 현황 및 전망 vol.36, pp.2, 2020, https://doi.org/10.15681/kswe.2020.36.2.153