참고문헌
- T. Lammers, W. E. Hennink, and G. Storm, "Tumour-targeted nanomedicines: principles and practice," Br. J. Cancer, 99, 392-397 (2008). https://doi.org/10.1038/sj.bjc.6604483
- D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, "Nanocarriers as an emerging platform for cancer therapy," Nat. Nanotechnol., 2, 751-760 (2007). https://doi.org/10.1038/nnano.2007.387
- S. Hong, P. R. Leroueil, I. J. Majoros, B. G. Orr, J. R. Baker, Jr., and M. M. Banaszak Holl, "The binding avidity of a nanoparticlebased multivalent targeted drug delivery platform," Chem. Biol., 14, 107-115 (2007). https://doi.org/10.1016/j.chembiol.2006.11.015
- Q. Xu, Y. Liu, S. Su, W. Li, C. Chen, and Y. Wu, "Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles," Biomaterials, 33, 1627-1639 (2012). https://doi.org/10.1016/j.biomaterials.2011.11.012
- R. Pasqualini, E. Koivunen, R. Kain, J. Lahdenranta, M. Sakamoto, A. Stryhn, R. A. Ashmun, L. H. Shapiro, W. Arap, and E. Ruoslahti, "Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis," Cancer. Res., 60, 722-727 (2000).
- L. Milane, Z. Duan, and M. Amiji, "Development of EGFRtargeted polymer blend nanocarriers for combination paclitaxel/ lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells," Mol. Pharm., 8, 185-203 (2011). https://doi.org/10.1021/mp1002653
- M. Saad, O. B. Garbuzenko, E. Ber, P. Chandna, J. J. Khandare, V. P. Pozharov, and T. Minko, "Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging?," J. Control. Release, 130, 107-114 (2008). https://doi.org/10.1016/j.jconrel.2008.05.024
- H. F. Liang, C. T. Chen, S. C. Chen, A. R. Kulkarni, Y. L. Chiu, M. C. Chen, and H. W. Sung, "Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer," Biomaterials, 27, 2051-2059(2006). https://doi.org/10.1016/j.biomaterials.2005.10.027
- M. E. Davis, "The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic," Mol. Pharm., 6, 659-668 (2009). https://doi.org/10.1021/mp900015y
- F. Gu, L. Zhang, B. A. Teply, N. Mann, A. Wang, A. F. Radovic- Moreno, R. Langer, and O. C. Farokhzad, "Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers," Proc. Natl. Acad. Sci. U. S. A., 105, 2586-2591 (2008). https://doi.org/10.1073/pnas.0711714105
- J. A. Barreto, W. O'Malley, M. Kubeil, B. Graham, H. Stephan, and L. Spiccia, "Nanomaterials: applications in cancer imaging and therapy," Adv. Mater., 23, H18-40 (2011). https://doi.org/10.1002/adma.201100140
- A. Z. Wang, R. Langer, and O. C. Farokhzad, "Nanoparticle delivery of cancer drugs," Annu. Rev. Med., 63, 185-198 (2012). https://doi.org/10.1146/annurev-med-040210-162544
- S. P. Egusquiaguirre, M. Igartua, R. M. Hernandez, and J. L. Pedraz, "Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research," Clin. Transl. Oncol., 14, 83-93 (2012). https://doi.org/10.1007/s12094-012-0766-6
- S. C. Abeylath, S. Ganta, A. K. Iyer, and M. Amiji, "Combinatorialdesigned multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery," Acc. Chem. Res., 44, 1009-1017 (2011). https://doi.org/10.1021/ar2000106
- J. M. Saul, A. V. Annapragada, and R. V. Bellamkonda, "A dualligand approach for enhancing targeting selectivity of therapeutic nanocarriers," J. Control. Release, 114, 277-287 (2006). https://doi.org/10.1016/j.jconrel.2006.05.028
- X. Li, H. Zhou, L. Yang, G. Du, A. S. Pai-Panandiker, X. Huang, and B. Yan, "Enhancement of cell recognition in vitro by dualligand cancer targeting gold nanoparticles," Biomaterials, 32, 2540-2545 (2011). https://doi.org/10.1016/j.biomaterials.2010.12.031
- Y. Nie, D. Schaffert, W. Rodl, M. Ogris, E. Wagner, and M. Gunther, "Dual-targeted polyplexes: one step towards a synthetic virus for cancer gene therapy," J. Control. Release, 152, 127-134 (2011). https://doi.org/10.1016/j.jconrel.2011.02.028
- J. Grill, V. W. Van Beusechem, P. Van Der Valk, C. M. Dirven, A. Leonhart, D. S. Pherai, H. J. Haisma, H. M. Pinedo, D. T. Curiel, and W. R. Gerritsen, "Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids," Clin. Cancer. Res., 7, 641-650 (2001).