Vegetation Classification and Biomass Estimation using IKONOS Imagery in Mt. ChangBai Mountain Area

IKONOS 위성영상을 이용한 중국 장백산 일대의 식생분류 및 바이오매스 추정

  • Cui, Gui-Shan (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Woo-Kyun (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Zhu, Wei-Hong (Department of Geography department, Yanbian University) ;
  • Lee, Jongyeol (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Kwak, Hanbin (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Choi, Sungho (Department of Geography and Environment, Boston University) ;
  • Kwak, Doo-Ahn (GIS/RS Center for Environmental Resources, Korea University) ;
  • Park, Taejin (GIS/RS Center for Environmental Resources, Korea University)
  • Published : 2012.09.30

Abstract

This study was to estimate the biomass of Mt. Changbai mountain area using the IKONOS imagery and field survey data. Then, we prepared the regression function using the vegetation index derived from the IKONOS and biomass estimated from field measured data of previous studies, respectively. The five vegetation index which used in the regression model was SAVI, NDVI, SR, ARVI, and EVI. As a result, the rank of the R-square from coefficient of correlation was as follow, SAVI(0.84), NDVI(0.73), SR(0.59), ARVI(0.0036), EVI(0.0026). Finally, we estimated the biomass of non-measured area using the Soil Adjusted Vegetation Index (SAVI). This study can be used as reference methodology for the estimation of carbon sinks of primary forest.

본 연구에서는 접근이 어려운 장백산 중국 지역의 바이오매스를 현장조사 자료와 IKONOS 위성영상을 이용하여 추정하였다. IKONOS 위성영상을 이용하여 임상단위로 수종구분을 하고, 위성영상으로부터 추정된 식생지수와 기존 연구에서 추정된 장백산 일부 지역의 바이오매스(Biomass)를 이용하여 회귀분석을 실시하였다. 이때, 위성영상으로부터 추정된 식생지수 5가지(SAVI, NDVI, SR, ARVI, EVI)와 현장정보가 이용되었다. 그 결과 5가지 식생지수와 바이오매스간의 상관관계의 결정계수의 순위는 다음과 같이 SAVI(0.84), NDVI(0.73), SR(0.59), ARVI(0.0036), EVI(0.0026) 나타났다. 이와 같은 결과를 바탕으로 최종적으로, 장백산 일부 지역에 대한 수종별 바이오매스 분포량을 산출함으로써 천연림의 탄소흡수원 추정을 위한 기초자료를 마련하였다.

Keywords

References

  1. 김태민, 송철철, 이우균, 손요환, 배상원, 김춘식. 2007. Quickbird 영상에 의한 소나무의 유역단위 식생탄소저장능력 추정. 한국산림측정학회지 10: 33-38.
  2. 이상훈. 2009. 지표면 식생 변화 감시를 위한 NDVI 영상자료 시계역 시리즈의 적응 재구축. 대한원격탐사학회지 25(2): 95-105.
  3. 임종수, 한원성, 황주호, 정상영, 조현국, 신만용. 2009. 위성영상자료 및 국가 산림자원조사 자료를 이용한 산림 biomass 추정. 대한원격탐사학회지 25(4): 311-320.
  4. 중국 국가 임업국. 2010. www.forestry.gov
  5. Anderson, G.L., Hanson, J.D. and Haas, R.H. 1993. Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sensing of Environment 45(2): 165-175. https://doi.org/10.1016/0034-4257(93)90040-5
  6. Anaya, J.A., Chuvieco, E. and Palacios-Orueta, A. 2009. Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management 257(4): 1237-1246. https://doi.org/10.1016/j.foreco.2008.11.016
  7. Dong, J., Kaufmann, R.K., Myneni, R.B., Tucker, C.J., Kauppi, P.E., Liski, J., Buermann, W., Alexeyev, V. and Hughes, M.K. 2003. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks, Remote Sensing of Environment 84(3): 393-410. https://doi.org/10.1016/S0034-4257(02)00130-X
  8. Epiphanio, J. 1995. Dependence of NDVI and SAVI on sun/sensor geometry and its effect on fAPAR relationships in alfalfa. Remote Sensing of Environment 51(3):351-360. https://doi.org/10.1016/0034-4257(94)00110-9
  9. Fassnacht, K.S., Gower, S.T., MacKenzie, M.D., Nordheim, E.V. and Lillesand, T.M. 1997. Estimating the leaf area index of north central Wisconsin forests using the Landsat Thematic Mapper. Remote Sensing of Environment 61(2): 229-245. https://doi.org/10.1016/S0034-4257(97)00005-9
  10. Goetz, S.J., Prince, S.D., Small, J. and Gleason, A.C. 2000. Interannual variability of global terrestrial primary production: results of a model driven with satellite observations. Journal of Geophysical Research 105(D15): 20077-20091. https://doi.org/10.1029/2000JD900274
  11. Guo, N. 2003. Vegetation index and its advances, Arid meteorology 21(4): 71-75.
  12. Guo, Z.L., Zheng, J.P., Ma, Y.D., Han, S.J., Li, Q.K., Yu, G.R., Fan, C.N., Liu, W.D. and Shao, D.K. 2006. A preliminary study on fine root biomass and dynamics of woody plants in several major forest communities of Changbai Mountain, China. Acta ecologica sinica 26(9): 2855-2862.
  13. Gasparri, N.L., Parmuchi, M.G., Bono, J., Karszenbaum, H. and Montenegro, C.L. 2010. Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina, Journal of Arid Environments 74(10): 1262-1270. https://doi.org/10.1016/j.jaridenv.2010.04.007
  14. Jensen, J. 2009. Remote sensing of the environment. Pearson Education India. 381-387.
  15. Kaufman, Y.J. and Tanre, D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. Geoscience and Remote Sensing 30(2): 261-270. https://doi.org/10.1109/36.134076
  16. Huete, A. and Liu, H, 1994, An Error and Sensitivity Analysis of the Atmospheric and Soil Correcting Variants of the Normalized Difference Vegetation Index for the MODIS-EOS, Institute of Electrical and Electronics Engineers Transactions on Geoscience and Remote Sensing 34(4): 897-905
  17. Huete, A. and Justice, C. 1999, MODIS Vegetation Index (MOD13) Algorithm Theoretical Basis Document, Greenbelt: NASA Goddard Space Flight Center, http://modarch. gsfc.nasa.gov/MODIS/LAND/#vegetationindices, pp. 129.
  18. Mani, S. and Parthasarathy, N. 2007. Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India, Biomass and Bioenergy 31(5): 284-290. https://doi.org/10.1016/j.biombioe.2006.08.006
  19. Nsset, E. and Gobakken, T. 2008. Estimation of aboveand below-ground biomass across regions of the boreal forest zone using airborne laser, Remote Sensing of Environment 112(6): 3079-3090. https://doi.org/10.1016/j.rse.2008.03.004
  20. Tarpley, J.D. Schneider, S.R. and Money, R.L. 1984. Global Vegetation Indices from the NOAA-7 Meteorological Satellite, Journal of Applied Meteorology 23: 491-494. https://doi.org/10.1175/1520-0450(1984)023<0491:GVIFTN>2.0.CO;2
  21. Tan, K., Piao, S., Peng, C. and Fang, J. 2007. Satellitebased estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999, Forest Ecology and Management 240(1-3): 114-121. https://doi.org/10.1016/j.foreco.2006.12.018
  22. Zhao, S.Q., Fang, J.Y., Zong, Z.J., Zhu, B., Shen, H.H. 2004, Composition, structure and species diversity of plant communities along an altitudinal gradient on the northern slope of Mt. Changbai, Northeast China, Biodiversity Science 12(1): 164-173.
  23. Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Le Moine, J. and Ryu, S.R, 2004. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA, Remote Sensing of Environment 93(3): 402-411. https://doi.org/10.1016/j.rse.2004.08.008
  24. Zhu, B., Wang, X., Fang, J., Piao, S., Shen, H., Zhao, S. and Peng, C. 2010. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China, Journal of Plant Research 123(4): 439-452. https://doi.org/10.1007/s10265-009-0301-1
  25. Wang, F.J. 1990. Fuzzy supervised classification of remote sensing image. Institute of Electrical and Electronics Engineers transactions on geoscience and remote sensing 28(2): 194-201.
  26. Wulder, M. and Niemann, K. 2000, Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery, Remote sensing of Environment 73: 103-114. https://doi.org/10.1016/S0034-4257(00)00101-2