Georeferencing of Primary Species Occurrence Data and Necessity of Data Quality Control - A Case Study of Two Varieties of Ox-Knee, Achyranthes bidentata Blume -

1차종발생자료를 응용한 지리참조연산표준화 및 자료 품질 관리의 필요성 - 쇠무릎과 털쇠무릎의 적용 사례 -

  • Chang, Chin-Sung (Department of Forest Sciences and The Arboretum, College of Agriculture and Life Sciences, Seoul National University) ;
  • Chang, Kae Sun (Korea National Arboretum) ;
  • Ahn, Yong-Sup (Department of Herbal Crop Research, NIHHIS, RDA) ;
  • Kim, Hui (Department of Medicinal Plants Resources, Mokpo National University)
  • 장진성 (서울대학교 농업생명과학대학 산림과학부 및 수목원) ;
  • 장계선 (산림청 국립수목원 산림생물조사과) ;
  • 안영섭 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 김휘 (목포대학교 한약자원학과)
  • Published : 2012.06.30

Abstract

The purpose of this contribution is to develop the framework of a methodology for identifying potential errors in georeferencing and in an application of it using specimens of Ox-Knee, Achyranthes bidentata Blume in Korea. At infraspecific level, uncertainty of identification showed that 41% of A. bidentata var. japonica and 28% of var. bidentata were misidentified, suggesting that the uncertainty level was independent of the reliability of experts' identification. For georeference specimen records, 71 specimens out of total 303 were selected and utilized as occurrence data: Uncertainty was 32.4 km at maximum and was 0.1297 km at minimum (mean = 4,055 m, s.d. = 5,772 m). Var. japonica is common throughout most of the southeastern Korea and west coastal areas, while var. bidentata has been found as far north as Gyeonggi and Gangwon provinces. We modelled the potential distribution of two varieties using Bioclim approach in Korea based on several environmental factors. Our results indicated the most important region for var. japonica lies the west coast ranges and southern area, while for Chungcheongnam-do of potential high diversity occurs for var. bidentata. This study shows that the major factors to determine the distribution patterns of two varieties were thermal factors, rather than precipitation. The Bioclim model using geocode and georeferencing data makes the information increasingly useful and reliable. To improve data quality, it requires full management from data collection to final databases including data cleaning.

한약재 우슬로 알려진 쇠무릎과 털쇠무릎 두 변종 식물표본자료의 지리참조연산 표준화 작업을 통해, 1차종 발생데이터를 수집하면서 발생된 오류의 특성과 발생 원인을 조사하였다. 본 연구에서 시도한 재동정의 경우, 변종 수준의 동정에서는 쇠무릎의 경우 41%, 털쇠무릎의 경우 28%가 오동정으로 확인되었지만, 동정자의 동정신뢰도 수준은 변종의 동정 정확도와 무관하였다. 전체 303개 표본자료 중 71점의 지리참조연산을 실시하여 산출된 불확실성의 범위는 0.1297 km(최소)-32.4 km(최대), 평균 4,055m, 표준편차 5,772m로 확인되었다. 털쇠무릎은 한반도 중부에 넓게 분포하였으나, 쇠무릎은 경상남도와 전라남도를 포함한 남부해안 지역과 서해안 지역을 중심으로 분포하였다. 바이오클림(Bioclim) 분포모델을 적용한 결과, 쇠무릎의 최적생육지역은 남부지방 및 서부해안지역인 반면, 털쇠무릎의 경우 충청남도를 중심으로 한 중부지역임을 확인하였다. 두 분류군이 위도상으로 구분되는 가장 중요한 원인은 기후 인자 중 강수량보다는 기온인자로 확인되었다. 표본자료의 정보량을 판단하기 위해 지리참조연산결과 종의 전체적인 분포정보, 기후 정보 모델링을 통한 최적생육분포 면적 등의 정보량이 증가되었다. 본 연구에서 실시한 것과 같이 자료 품질 향상을 위해 최초 자료수집과 이후 입력까지 모든 관리 절차에서 발생하는 오류를 관리할 필요가 있다.

Keywords

References

  1. Annoymous. 2011. DIVA-gis. http://www.diva-gis.org
  2. Bao, B.J., Steven, E.C. and Thomas, B.S. 2003. Amaranthaceae In : Z.Y., Wu, P.H., Raven and D.Y. Hong, eds. Flora of China. Vol. 5. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis.
  3. Booth, T.H. 1996. Matching Trees and Sites. In : Proceedings of an international workshop. ACIAR Proceedings No. 63.
  4. Chapman, A.D. and Busby, J.R. 1994. Linking plant species information to continental biodiversity inventory, climate and environmental monitoring. pp. 177-195. In : R.I. Miller, ed. Mapping the Diversity of Nature. Chapman and Hall. London.
  5. Chapman, A.D. and Milne, D.J. 1998. The Impact of Global Warming on the Distribution of Selected Australian Plant and Animal Species in relation to Soils and Vegetation. Environment Australia. Canberra.
  6. Chapman, A.D. 2005a. Principles of Data Quality. Available form http://www2.gbif.org/DataQuality.pdf.
  7. Chapman, A.D. 2005b. Principles and methods of Data cleaning. Available from http://www2.gbif.org/DataCleaning.pdf.
  8. Chapman, A.D. 2005c. Usese of primary species-occurrence data. from http://www2.gbif.org/UsesPrimaryData.pdf.
  9. Clemants, S.E. 2006. Amranthaceae. pp. 222-230. In : K. Iwatsuki, D.E. Boufford, and H. Ohba, eds. Flora of Japan. Vol. 2a. Kodansha Ltd., Tokyo.
  10. Cunningham, D., Walsh, K. and Anderson, E. 2001. Potential for Seed Gum Production from Cassia brewsteri. RIRDC Project No. UCQ-12A. Kingston, ACT: Rural Industries Research and Development Corporation. Available from http://www.rirdc.gov.au/reports/NPP/UCQ-12A.pdf. (cited 01 October 2010).
  11. Faith, D.P., Walker, P.A., Margules, C.R., Stein, J. and Natera, G. 2001. Practical application of biodiversity surrogates and percentage targets for conservation in Papua New Guinea. Pacific Conservation Biology 6: 289-303.
  12. David, L.N., Robert, P.G., Robert, G. and Allen, J.R. 2003. Museum Collections Data and Online Mapping Applications. A New Resource for Land Managers. Mountain Research and Development 23: 334-337. https://doi.org/10.1659/0276-4741(2003)023[0334:MCDAOM]2.0.CO;2
  13. Hill, A., Guralnick, R., Flemons, P., Beaman, R., Wieczorek, J., Ranipeta, A., Chavan, V. and Remsen, D. 2009. Location, location, location: Utilizing pipelines and services to more effectively georeference the world's biodiversity data. BMC Bioinformatics 10: S3.
  14. Kim, H., Chang, K.S. and Chang, C.S. 2010. E. H. Wilson's expedition to Korea in 1917 and 1918. Journal of Japanese Botany 85: 99-117.
  15. Korea Food & Drug Adminstration. 2007. KFDA announcement No 2007-72. The Korean Pharmacopoeia. supplement. p. 417 (in Korean).
  16. Longmore, R. ed. 1986. Atlas of Elapid Snakes of Australia. Australian Flora and Fauna Series No. 7. Australian Government Publishing Service. Canberra, Australia.
  17. Lyal, C.H.C. and Weitzman, A.L., 2004, Taxonomy: Exploring the Impediment, Science, 305, 1106.
  18. Margules, C.R. and Pressey, R.L. 2000. Systematic Conservation Planning. Nature 405: 243-253. https://doi.org/10.1038/35012251
  19. Nicholls, N. 1997. Increased Australian wheat yield due to recent climate trends. Nature 387: 484-485. https://doi.org/10.1038/387484a0
  20. Ohwi, J. 1965. Flora of Japan. Smithonian Institution. Washington, D.C.
  21. Suh, Y.B. 2007. Amaranthaceae. pp. 303-305. In : C.W. Park. ed. The Genera of Vascular Plants of Korea. Academy Publishing Co. Seoul, Korea.
  22. Peterson, A.T., Navarro-Siguenza, A.G. and Benitez-Diaz, H. 1998. The need for continued scientific collecting: A geographic analysis of Mexican bird specimens. Ibis 140: 288-294.
  23. Pouliquen-Young, O. and Newman, P. 1999. The Implications of Climate Change for Land-Based Nature Conservation Strategies. Final Report 96/1306. Australian Greenhouse Office, Environment Australia, Canberra, and Institute for Sustainability and Technology Policy, Murdoch University, Perth, Australia. pp. 91.
  24. Rios, N.E. and Bart, H.L. 2010. GEOLocate (Version 3.22) [Computer software]. Belle Chasse, LA: Tulane University Museum of Natural History.
  25. Scoble, M.J. 2010. Natural history collections digitization : rationale and value. Biodiversity Informatics 7: 77-80.
  26. Secretariat of the Convention on Biological Diversity. 2006. Guide to the Global Taxonomy Initiative. http://www.cbd.int/doc/publications/cbd-ts-30.pdf.
  27. Spear, M., Hall, J. and Wadsworth, R. 1996. Communication of Uncertainty in Spatial Data to Policy Makers in Mowrer, H.T., Czaplewski, R.L. and Hamre, R.H. (eds) Spatial Accuracy Assessment in Natural Resources and Environmental Sciences: Second International Symposium, May 21-23, 1996. Fort Collins, Colorado. USDA Forest Service Technical Report RM-GTR-277.
  28. Wieczorek, J. 2001a. MaNIS: Georeferencing Guidelines. Availabla from http://manisnet.org/GeorefGuide.html (cited in 2011. 10.1.).
  29. Wieczorek, J. 2001b. MaNIS: Georeferencing Calculator. Availabla from http://manisnet.org/CoordCalcManual.html (cited in 2011. 10.1.).
  30. Wieczorek, J. and Beaman, R.S. 2002. Georeferencing: Collaboration and Automation. In : Symposium of Trends and Developments in Biodiversity Informatics. Indaiatuba. Brazil. Available from http://www.cria.org.br/eventos/tdbi/bis/georeferencing [cited in 01 Octpber 2011].
  31. Wieczorek, J., Guo, Q. and Hijmans, R.J. 2004. The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. International Journal of Geographical Information Science 18: 745-767. https://doi.org/10.1080/13658810412331280211