Needle Life Span, Photosynthetic Pigment and Nitrogen Allocation of Picea jezoensis in Korea

우리나라 가문비나무의 침엽 수명, 광색소 및 질소 배분 특성

  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Du-Hyun (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Gil Nam (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Yun, Chung-Weon (Department of Forest Resource, Kongju National University)
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 김두현 (국립산림과학원 산림유전자원부) ;
  • 김길남 (국립산림과학원 산림유전자원부) ;
  • 윤충원 (국립공주대학교 산림자원학과)
  • Published : 2012.03.31

Abstract

We have investigated needle life span, photosynthetic pigment and nitrogen allocation pattern in the needle of Picea jezoensis in the three populations (Gyebangsan, Deogyusan and Jirisan) to find out growth environmental condition which needs the strategy development of conservation and restoration against population decline. Needle survival rate was the highest in Gyebangsan (87.0%) and the lowest in Jirisan (71.6%), and it decreased with the increase of needle age. Needle chlorophyll a and b in Deogyusan and Jirisan showed higher content in older needle, but chlorophyll content in Gyebangsan was the highest in 2-year-old needle. Carotenoid content was the highest in the needle in Gyebangsan, and it increased along with needle age. Chlorophyll a/b ratio showed the highest value in Jirisan and the lowest value in Gyebangsan. Chlorophyll/carotenoid ratio decreased with needle age, Needle nitrogen content was the highest in Deogyusan (1.51%) and the lowest in Gyebangsan (1.40%), and the older needle had the lower content. In contrast, the highest chlorophyll/nitrogen ratio represented the oldest needle.

우리나라 계방산, 덕유산, 지리산에 분포하고 있는 가문비나무 집단의 보존과 복원 전략 개발에 요구되는 생육 환경을 구명하기 위하여, 가문비나무 침엽의 수명, 침엽 내 엽록소 및 질소 배분 양상을 조사하였다. 가문비나무의 평균 침엽 생존율은 계방산(87.%)이 가장 높았고, 지리산(71.6%)이 가장 낮았으며, 침엽의 생존율은 침엽 연령 증가와 함께 감소하였다. 덕유산과 지리산 가문비나무의 침엽은 연령이 증가함에 따라 엽록소 a, b 모두 증가하였으나, 계방산 가문비나무의 엽록소 함량은 2년생 침엽에서 가장 높았다. 카로테노이드 함량은 계방산 가문비나무 침엽에서 가장 높았으며, 침엽의 연령이 증가함에 따라 카로테노이드 함량은 증가하였다. 엽록소 a와 b의 비는 지리산에서 가장 높았고, 계방산에서 가장 낮게 나타났다. 세 집단의 침엽 연령이 증가함에 따라 엽록소와 카로테노이드 함량의 비는 점차 감소하였다. 가문비나무 침엽 내 질소 함량은 덕유산이 1.51%로 가장 높게 나타났으며, 계방산이 1.40% 으로 가장 낮았고, 질소 함량은 침엽 연령이 증가하면서 감소하였다. 엽록소와 질소 함량의 비는 침엽의 연령이 증가함에 따라 증가하였다.

Keywords

References

  1. 공우석. 2004. 한반도에 자생하는 침엽수의 종 구성과 분포. 대한지리학회지 39: 528-543.
  2. 안현철, 김갑태, 추갑철, 엄태원, 박삼봉, 박은희. 2010. 지리산국립공원 천왕봉지역 가문비나무림의 산림군집구조. 한국임학회지 99: 590-596.
  3. 한아름. 2008. 성숙목의 충실 종자 생산과 임상 기질이 가문비나무 치수 발생에 미치는 영향. 서울대학교 대학원 석사학위논문. pp.89.
  4. Anderslon, J.M. 1986. Photoregulation of the composition, function and structure of thylakoid membranes. Annual Review of Plant Physiology 37: 93-136. https://doi.org/10.1146/annurev.pp.37.060186.000521
  5. Eriksson, G., Namkoong, G. and Oberds, J.H. 1993. Dynamic gene conservation for uncertain futures. Forest Ecology and Management 62: 15-37. https://doi.org/10.1016/0378-1127(93)90039-P
  6. Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19. https://doi.org/10.1007/BF00377192
  7. Ewers, F.W. and Schmid, R. 1981. Longevity of needle fascicles of Pinus longaeva (Bristlecone Pine) and other North American pines. Oecologia 51: 107-115. https://doi.org/10.1007/BF00344660
  8. Gower, S.T., Reich, P.B. and Son, Y. 1993. Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiology 12: 327-345. https://doi.org/10.1093/treephys/12.4.327
  9. Hikosaka, K. and Terashima, I. 1995. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant Cell Environment 18: 605-618. https://doi.org/10.1111/j.1365-3040.1995.tb00562.x
  10. Hiscox, J.D. and Israelstam, G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334. https://doi.org/10.1139/b79-163
  11. Kayama, M., Sasa, K. and Koike, T. 2002. Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology 22: 707-716. https://doi.org/10.1093/treephys/22.10.707
  12. Miyawaki, A. 1988. Vegetation of Japan Hokkaido. Sibundo, Tokyo, 563pp. (In Japanese with English abstract).
  13. Nakagawa, M., Kurahashi, A. and Hogetsu, T. 2003. The regeneration characteristics of Picea jezoensis and Abies sachalinensis on cut stumps in the sub-boreal forests of Hokkaido Tokyo University Forest. Forest Ecology and Management 180: 353-359. https://doi.org/10.1016/S0378-1127(02)00654-0
  14. Niinemets, U. and Kull, O. 1995a. Effects of light availability and tree size on the architecture of assimilative surface in the canopy of Picea abies: variation in needle morphology. Tree Physiology 15: 307-315. https://doi.org/10.1093/treephys/15.5.307
  15. Niinemets, U. and Kull, O. 1995b. Effects of light availability and tree size on the architecture of assimilative surface in the canopy of Picea abies: variation in shoot structure. Tree Physiology 15: 791-798. https://doi.org/10.1093/treephys/15.12.791
  16. Nikolov, N. and Helmisaari, H. 1992. Silvics of the circumpolar boreal forest tree species. In: H.H. Shugart, Leemans, R. and Bonan, G.B. (ed.), A Systems Analysis of the Global Boreal Forest, Cambridge University Press, Cambridge. pp. 13-84.
  17. Palmroth, S. and Hari, P. 2001. Evaluation of the importance of acclimation of needle structure, photosynthesis and respiration to available photosynthetically active radiation in a Scots pine canopy. Canadian Journal of Forest Research 31: 1235-1243. https://doi.org/10.1139/x01-051
  18. Reich, P.B., Ellsworth, D.S. and Uhl, C. 1995. Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest. Functional Ecology 9: 63-76.
  19. Reich, P.B., Koike, T. Gower, S.T. and Schoettle, A.W. 1994. Causes and consequences of variation in conifer leaf life span. In: W.K. Smith and Hinckley, T.M.(ed.) Ecophysiology of Coniferous Forests. Academic Press, San Diego. pp. 225-254.
  20. Reich, P.B., Walters, M.B. and Ellsworth, D.S. 1992. Leaf lifespan in relation to leaf, plant, and stand characteristics among diverse ecosystem. Ecological Monographs 62: 365-392.
  21. Robledo-Arnuncio, J.J., Smouse, P.E., Gil, L. and Alia, R. 2004. Pollen movement under alternative silvicultural practices in native populations of Scots pine (Pinus sylvestris L.) in central Spain. Forest Ecology and Management 197: 245-255. https://doi.org/10.1016/j.foreco.2004.05.016
  22. Schoettle, A.W. and Fahey, T.J. 1994. Foliage and fine root longevity of pines. Ecological Bulletins 43: 136-153.
  23. Stenberg, P., Palmroth, S., Bond, B.J., Sprugel, D.G. and Smolander, H. 2001. Shoot structure and photosynthetic efficiency along the light gradient in a Scots pine canopy. Tree Physiology 21: 805-814. https://doi.org/10.1093/treephys/21.12-13.805
  24. Withington, J.M., Reich, P.B., Oleksyn, J. and Eissenstat, D.M. 2006. Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs 76: 381-397. https://doi.org/10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2