Effect of the Cation Part of Imidazolium Ionic Liquids on Synthesis of Palladium Particle

팔라듐 입자 제조에 미치는 이미다졸계 이온성액체의 양이온 효과

  • Kim, Chang Soo (Clean Energy Research Center, Korea Institute of Science & Technology) ;
  • Ahn, Byoung Sung (Clean Energy Research Center, Korea Institute of Science & Technology) ;
  • Tae, Hyunman (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Jeon, Seung Hye (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 김창수 (한국과학기술연구원, 청정에너지연구센터) ;
  • 안병성 (한국과학기술연구원, 청정에너지연구센터) ;
  • 태현만 (서울과학기술대학교 화공생명공학과) ;
  • 전승혜 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Published : 2012.10.10

Abstract

Palladium particles were synthesized by conventional chemical reduction method with ionic liquids. The size and shape of palladium particles were significantly affected by the cation parts of ionic liquids. This is mainly attributed to the different stabilities of the ionic liquid structure formed by the physical bond between the cation parts. Among ionic liquids with [$BF_{4}$] as an anion part, the hexyl substituent in the cation parts was more effective to synthesize palladium particles with the smaller size and more uniform shape.

전통적인 화학적 환원법에 이온성액체를 사용하여 팔라듐 입자를 제조하였다. 이온성액체를 구성하는 양이온의 종류에 따라 형성된 팔라듐 입자는 다양한 크기와 모양을 가지는 것이 관찰되었다. 이는 이온성액체의 양이온이 길이에 따라 합성 중에 이온성액체들 간에 형성되는 구조체의 안정성에 차이를 보이기 때문이다. [$BF_{4}$] 음이온을 가지는 이온성액체 중 양이온의 알킬기가 hexyl인 이온성액체를 이용하여 합성된 팔라듐 입자가 가장 작고 균일하게 형성되었다.

Keywords

References

  1. M. Fernandez-Garcia, A. Martinez-Arias, L. N. Salamanca, J. M. Coronado, J. A. Anderson, J. C. Conesa, and J. Soria, J. Catal., 187, 474 (1999). https://doi.org/10.1006/jcat.1999.2624
  2. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, and N. Hamada, Nature, 418, 164 (2002). https://doi.org/10.1038/nature00893
  3. J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley, Acc. Chem. Res., 36, 20 (2003). https://doi.org/10.1021/ar990017q
  4. L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001). https://doi.org/10.1038/35104634
  5. M. T. Reetz and E. Westermann, Angew. Chem, Int. Ed., 39, 165 (2000). https://doi.org/10.1002/(SICI)1521-3773(20000103)39:1<165::AID-ANIE165>3.0.CO;2-B
  6. Y. Li, X. M. Hong, D. M. Collard, and M. A. El-Sayed, Org. Lett., 2, 2385 (2000). https://doi.org/10.1021/ol0061687
  7. S.-W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, J. Am. Chem. Soc., 124, 7642 (2002). https://doi.org/10.1021/ja026032z
  8. R. Narayanan and M. A. El-Sayed, Nano Lett., 4, 1343 (2004). https://doi.org/10.1021/nl0495256
  9. S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, and P. Yang, Nat. Mater., 6, 692 (2007). https://doi.org/10.1038/nmat1957
  10. K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, and G. A. Somorjai, Nano Lett., 7, 3097 (2007). https://doi.org/10.1021/nl0716000
  11. C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, Angew. Chem, Int. Ed., 47, 3588 (2008). https://doi.org/10.1002/anie.200800073
  12. Y. Sun and Y. Xia, Science, 298, 2176 (2002). https://doi.org/10.1126/science.1077229
  13. B. Wiley, T. Herricks, Y. Sun, and Y. Xia, Nano Lett., 4, 1733 (2004). https://doi.org/10.1021/nl048912c
  14. F. Kim, S. Connor, H. Song, T. Kuykendall, and P. Yang, Angew. Chem, Int. Ed., 43, 3673 (2004). https://doi.org/10.1002/anie.200454216
  15. B. Wiley, Y. Sun, and Y. Xia, Langmuir, 21, 8077 (2005). https://doi.org/10.1021/la050887i
  16. Y. Xiong, J. Chen, B. Wiley, Y. Xia, S. Aloni, and Y. Yin, J. Am. Chem. Soc., 127, 7332 (2005). https://doi.org/10.1021/ja0513741
  17. Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, and Z.-Y. Li, Nano Lett., 5, 1237 (2005). https://doi.org/10.1021/nl0508826
  18. J. Chen, T. Herricks, and Y. Xia, Angew. Chem, Int. Ed., 44, 2589 (2005). https://doi.org/10.1002/anie.200462668
  19. H. Song, F. Kim, S. Connor, G. A. Somorjai, and P. Yang, J. Phys. Chem. B, 109, 188 (2005). https://doi.org/10.1021/jp0464775
  20. D. Seo, J. C. Park, and H. Song, J. Am. Chem. Soc., 128, 14863 (2006). https://doi.org/10.1021/ja062892u
  21. B. J. Wiley, Y. Xiong, Z.-Y. Li, Y. Yin, and Y. Xia, Nano Lett., 6, 765 (2006). https://doi.org/10.1021/nl060069q
  22. Y. Xiong and Y. Xia, Adv. Mater., 19, 3385 (2007). https://doi.org/10.1002/adma.200701301
  23. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000).
  24. T. Welton, Chem. Rev., 99, 2071 (1999). https://doi.org/10.1021/cr980032t
  25. X. Mu, D. G. Evans, and Y. Kou, Catal. Lett., 97, 151 (2004). https://doi.org/10.1023/B:CATL.0000038577.18441.bf
  26. A. P. Umpierre, G. Machado, G. H. Fecher, J. Morais, and J. Dupont, Adv. Synth. Catal., 347, 1404 (2005). https://doi.org/10.1002/adsc.200404313
  27. K. L. Luska and A. Moores, Adv. Synth. Catal., 353, 3167 (2011). https://doi.org/10.1002/adsc.201100551
  28. X. Yuan, N. Yan, S. A. Katsyuba, E. E. Zvereva, Y. Kou, and P. J. Dyson, Phys. Chem. Chem. Phys., 14, 6025 (2012).