Controllable Patterning of an Al Surface by a PDMS Stamp

PDMS를 이용한 균일한 알루미늄 표면 패터닝 연구

  • Park, Gayun (Department of Chemical Engineering, Inha University) ;
  • Kim, Kyungmin (Department of Chemical Engineering, Inha University) ;
  • Lee, Hoyeon (Department of Chemical Engineering, Inha University) ;
  • Park, Changhyun (Department of Chemical Engineering, Inha University) ;
  • Kim, Youngmin (SAMYOUNG S&C CO.LTd) ;
  • Tak, Yongsug (Department of Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemical Engineering, Inha University)
  • Published : 2012.10.10

Abstract

In this study, etched Al electrodes with ordered arrays of pits and high aspect ratios were successively obtained using a patterned protect layer on the Al surface prepared with soft lithography method. Various methods were applied to fabricate a well ordered protect layer on the Al surface and the difference of etched Al surfaces with and without a protect layer was investigated by using SEM. It was found that the etched Al surfaces were affected by using either a protect layer or a non protect layer. As a result, the Al surface with the well ordered pits could be achieved by protect layer. However, the etched Al with nonuniform pits can be obtained without any protect layers.

본 연구에서는 균일하고 높은 비율의 에치 피트를 갖는 알루미늄 전극을 제작하기 위해 소프트 리소그래피를 이용하여 알루미늄 표면에 보호층을 형성하였다. 알루미늄 표면 위에 잘 정돈된 보호층을 형성하기 위해 다양한 방법을 시도하였으며, 보호층을 이용한 알루미늄 에칭과 보호층이 존재하지 않는 알루미늄 에칭을 비교 관찰하였다. 보호층을 이용하여 알루미늄 에칭을 진행하였을 때, 알루미늄 표면에 균일한 에칭 표면이 확인되었으나, 보호층이 존재하지 않았을 때는 불균일한 표면 에칭이 관찰되었다.

Keywords

References

  1. R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, J. Electrochem. Soc., 131, 13 (1984). https://doi.org/10.1149/1.2115495
  2. N. Osawa and K. Fukuoka, Corrosion Science, 42, 585 (2000). https://doi.org/10.1016/S0010-938X(99)00117-1
  3. R.-G. Xiao, K.-P. Yan, J.-X. Yan, and J.-Z. Wang, Corrosion Science, 50, 1576 (2008). https://doi.org/10.1016/j.corsci.2008.02.017
  4. Z. H. Hou, J. H. Zeng, J. J. Chen, and S. J. Liao, Mater. Chem. Phys., 123, 625 (2010). https://doi.org/10.1016/j.matchemphys.2010.05.027
  5. Z. Ashitaka, G. E. Thompson, P. Skeldon, G. C. Wood, and K. Shimizu, J. Electrochem. Soc., 146, 1380 (1999). https://doi.org/10.1149/1.1391774
  6. F. Larmat, J. R. Reynolds, and Y.J. Qiu, Synthetic Metals, 79, 229 (1996). https://doi.org/10.1016/0379-6779(96)80198-6
  7. T. Balaji, R. Govindaiah, M. K. Sharma, Y. Purushotham, A. Kumar, and T. L. Prakash, Materials Letters, 56, 560 (2002). https://doi.org/10.1016/S0167-577X(02)00552-9
  8. P. Vasina, T. Zednicek, J. Sikula, and J. Pavelka, Microelectronics Reliability, 42, 849 (2002). https://doi.org/10.1016/S0026-2714(02)00034-3
  9. H. Shin, J.-S. Park, S. Kim, H. S. Jung, and K. S. Hong, Microelectronic Engineering, 77, 270 (2005). https://doi.org/10.1016/j.mee.2004.11.008
  10. H. Kishi, Y. Mizuno, and H. Chazono, Jpn. J. Appl. Phys., 42, 1 (2003). https://doi.org/10.1143/JJAP.42.1
  11. M. Pollet, S. Marinel, and G. Desgardin, Journal of the European Ceramic Society, 24, 119 (2004). https://doi.org/10.1016/S0955-2219(03)00122-5
  12. P. J. Harrop and D. S. Campbell, Thin Solid Films, 2, 273 (1968). https://doi.org/10.1016/0040-6090(68)90034-5
  13. K. Aoki, I. Murayama, Y. Fukuda, and A. Nishimura, Jpn. J. Appl. Phys., 36, L690 (1997). https://doi.org/10.1143/JJAP.36.L690
  14. Y. Liu, T. Cui, and K. Varahramyan, Solid-State Electronics, 47, 811 (2003). https://doi.org/10.1016/S0038-1101(02)00392-1
  15. O. G. Vendik and L. T. Ter-Martirosyan, Tech. Phys., 44, 954 (1999). https://doi.org/10.1134/1.1259412
  16. J. Kang, Y. Shin, and Y. Tak, Electrochimica Acta, 51, 1012 (2005). https://doi.org/10.1016/j.electacta.2005.04.070
  17. M. Baumgartner and H. Kaesche, Corrosion Science, 31, 231 (1990). https://doi.org/10.1016/0010-938X(90)90112-I
  18. K. R. Hebert and R. C. Alkire, J. Electrochem. Soc., 135, 2147 (1988).
  19. K. Hebert and R. Alkire, J. Electrochem. Soc., 135, 2447 (1988). https://doi.org/10.1149/1.2095356
  20. D. Goad, J. Electrochem. Soc., 144, 1965 (1997).
  21. T. Fukushima, K. Nishio, and H. Masuda, Electrochem. Solid-State Lett., 13, C17 (2010). https://doi.org/10.1149/1.3388511
  22. T. Fukushima, K. Nishio, and H. Masuda, J. Electrochem. Soc., 157, C137 (2010). https://doi.org/10.1149/1.3308594
  23. K. Nishio, T. Fukushima, and H. Masuda, Electrochem. Solid-State Lett., 9, B39 (2006). https://doi.org/10.1149/1.2214364
  24. K. Nishio, T. Fukushima, A. Takeda, and H. Masuda, Electrochem. Solid-State Lett., 10, C60 (2007). https://doi.org/10.1149/1.2767531
  25. J. P. Rolland, E. C. Hagberg, G. M. Denison, K. R. Carter, and J. M. De Simone, Angew. Chem., 116, 5920 (2004). https://doi.org/10.1002/ange.200461122
  26. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir, 18, 5314 (2002). https://doi.org/10.1021/la020169l
  27. X.-M. Zhao, Y. Xia, and G. M. Whitesides, J. Mater. Chem., 7, 1069 (1997). https://doi.org/10.1039/a700145b
  28. D. Qin, Y. Xia, and G. M. Whitesides, Nature Protocols, 5, 491 (2010). https://doi.org/10.1038/nprot.2009.234
  29. K. Y. Suh, J. Seong, A. Khademhosseini, P. E. Laibinis, and R. Langer, Biomaterials, 25, 557 (2004). https://doi.org/10.1016/S0142-9612(03)00543-X
  30. R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials, 20, 2363 (1999). https://doi.org/10.1016/S0142-9612(99)00165-9