Combustion Chracteristics of Biomass and Refuse Derived Fuel

바이오매스와 폐기물 고형연료의 연소특성

  • Gu, Jae-Hoi (Department of Environmental Engineering, Kongju National University) ;
  • Oh, Sea Cheon (Plant Engineering Center, IAE)
  • 구재회 (공주대학교 환경공학과) ;
  • 오세천 (고등기술연구원 플랜트엔지니어링센터)
  • Published : 2012.10.10

Abstract

To verify the utilization of biomass as energy, the combustion characteristic has been studied by an experimental combustion furnace under an isothermal and non-isothermal combustion. The wood pellet, rice straw and rice husk were used as biomass samples in this work. The characteristics of emission gases, dusts and residues from biomass combustion have been analyzed and compared with those of reuse derived fuel (RDF). From isothermal combustion experiments, it was found that the incomplete combustion of rice straw was greater that that of rice husk, wood pellet and RDF. This is due to the fact that the combustion reaction rate of the rice straw was faster than that of other samples, and the oxygen concentration in rice straw combustion was rapidly decreasing. It was also found that $NO_{X}$ concentration of emission gas from wood pellet combustion was the lowest. From non-isothermal combustion experiments, it was found that all samples were burned before $900^{\circ}C$. Also, the temperature range of $NO_{X}$ emission was similar to that of CO emission, on the other hand, $SO_{2}$ was emitted at a higher temperature than that of CO emission.

본 연구에서는 바이오매스의 에너지 활용성을 확인하기 위하여 실험실 연소로를 이용한 등온 및 비등온 연소특성 연구를 수행하였으며 바이오매스의 시료로는 목재펠렛, 볏짚 및 왕겨를 사용하였다. 바이오매스의 연소시 배출가스의 특성과 분진 및 잔류물을 분석하였으며 그 결과를 RDF의 연소실험 결과와 비교분석하였다. 등온 연소특성 실험으로부터 볏짚이 다른 시료에 비하여 연소속도가 빨라 급격히 산소량이 감소되어 불완전연소율이 증가함을 확인하였으며 목재펠렛의 경우 다른 시료에 비하여 가장 낮은 $NO_{X}$ 배출농도를 나타내었다. 또한 비등온 연소특성 실험으로부터 모든 시료가 $900^{\circ}C$의 연소온도에 도달하기 이전에 연소가 대부분 일어남을 확인할 수 있었으며 $NO_{X}$의 경우 CO가 배출되는 범위와 유사한 온도범위에서 배출되는 반면에 $SO_{2}$의 경우보다 고온에서 배출됨을 확인할 수 있었다.

Keywords

References

  1. Y. S. Choi, H. S. Choi, S. J. Kim, D. S. Jeong, and J. K. Koo, J. Korea Soc. Waste Manag., 26, 548 (2009).
  2. J. Fischer, The Council of the European Union Report, 5 (1991).
  3. European Committee for Standardization, Solid Recovered Fuels, CEN/TR Technical Report, 14745, 55 (2003).
  4. European Committee for Standardization, Solid Recovered Fuels-Specification and classes, CEN/TS Final Draft, 15359, 12 (2005).
  5. S. Zhou and X. Zhang, Korean J. Chem. Eng., 24, 170 (2007). https://doi.org/10.1007/s11814-007-5027-y
  6. C. Prompubess, L. Mekasut, P. Piumsomboon, and P. Kuchontara, Korean J. Chem. Eng., 24, 989 (2007). https://doi.org/10.1007/s11814-007-0109-4
  7. P. Purohit, A, K, Tripathi, and T. C. Kandpal, Energy, 31, 1321 (2006). https://doi.org/10.1016/j.energy.2005.06.004
  8. S. Paulrud and C. Nisson, Biomass Bioenergy, 20, 25 (2001). https://doi.org/10.1016/S0961-9534(00)00061-1
  9. M. Fang, L. Yang, G. Chen, Z. Shi, Z. Luo, and K. Cen, Fuel Process Technol., 85, 1273 (2004). https://doi.org/10.1016/j.fuproc.2003.08.002
  10. S. Sinkkonen, R. Makela, R. Vesterinen, and M. Lahtipera, Chemophere, 31, 2629 (1995). https://doi.org/10.1016/0045-6535(95)94372-U
  11. M. Otero, C. Diez, L. F. Calvo, A. I. Garcia, and A. Moran, Biomass Bioenergy, 22, 319 (2002). https://doi.org/10.1016/S0961-9534(02)00012-0
  12. D.-G. Lee, H.-Y. Shin, H. Kwak, and S.-Y. Bae, J. Korea Soc. Waste Manag., 22, 533 (2005).
  13. S. Rodjeen, L. Mekaust, P. Kuchontara, and P. Piumsomboon, Korean J. Chem. Eng., 23, 216 (2006). https://doi.org/10.1007/BF02705719
  14. W.-H. Kim, J. Korean Inst. Resources Recycling, 15, 46 (2006).
  15. N. Sanjel, J.-H. Gu, W.-T. Kwon, and S. C. Oh, Appl. Chem. Eng., 23, 333 (2012).