다제내성 슈퍼박테리아에 대한 새로운 항생제인 항균 펩타이드

Antimicrobial Peptide as a Novel Antibiotic for Multi-Drug Resistance "Super-bacteria"

  • 박성철 (순천대학교 공과대학교 고분자공학과) ;
  • 나재운 (순천대학교 공과대학교 고분자공학과)
  • Park, Seong-Cheol (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • 발행 : 2012.10.10

초록

최근 항생제에 대한 내성이 빠르게 확산됨에 따라 이를 극복하기 위해 새로운 항생제들을 찾기 위한 노력이 많은 연구자들에 의해 이루어지고 있다. 미생물의 외부공격에 대해 모든 생명체들은 방어물질을 분비하거나 내재하고 있는 데 그 중 하나가 항균 펩타이드이며, 전 세계적으로 활발한 연구가 이루어지고 있고 새로운 차세대 항생제로써 인식 되어진다. 이에 본 총설에서는 항균 펩타이드의 미생물에 대한 항생활성, 작용기작과 개발현황에 대해 고찰하고자 한다.

According to the requirement of novel antimicrobial agents for the rapidly increasing emergence of multi-drug resistant pathogenic microbes, a number of researchers have found new antibiotics to overcome this resistance. Among them, antimicrobial peptides (AMPs) are host defense molecules found in a wide variety of invertebrate, plant, and animal species, and are promising to new antimicrobial candidates in pharmatherapeutic fields. Therefore, this review introduces the antimicrobial action of antimicrobial peptide and ongoing development as a pharmetherapeutic agent.

키워드

참고문헌

  1. R. M. Klevens, J. R. Edwards, C. L. Richards, T. C. Jr Horan, R. P. Gaynes, D. A. Pollock, and D. M. Cardo, Public Health Rep., 122, 160 (2007).
  2. K. Yuji, G. Oiso, T. Matsumura, N. Murashige, and M. Kami, Clin. Infect. Dis., 52, 422 (2011).
  3. P. Nordmann, L. Poirel, T. R. Walsh, and D. M. Livermore, Trends Microbiol., 19, 588 (2011). https://doi.org/10.1016/j.tim.2011.09.005
  4. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, Nat. Rev. Microbiol., 2, 95 (2004). https://doi.org/10.1038/nrmicro821
  5. P. S. Stewart and J. W. Costerton, Lancet, 358, 135 (2001). https://doi.org/10.1016/S0140-6736(01)05321-1
  6. N. P. O'Grady, M. Aexander, E. P. Dellinger, J. L. Gerberding, S. O. Heard, D. G. Maki, and H. Masur, et al. MMWR Recomm. Rep., 51, 129 (2002).
  7. M. Zasloff, Nature, 415, 389 (2002). https://doi.org/10.1038/415389a
  8. J. J. Oppenheim, A. Biragyn, L. W. Kwak, and D. Yang, Ann. Rheum. Dis., 62, 1721 (2003).
  9. H. Steiner, D. Hultmark, A. Engström, H. Bennich, and H. G. Boman, Nature, 292, 246 (1981). https://doi.org/10.1038/292246a0
  10. Y. Shai, Biopolymers, 66, 236 (2002). https://doi.org/10.1002/bip.10260
  11. R. E. Hancock and H. G. Sahl, Nat. Biotechnol., 24, 1551 (2006). https://doi.org/10.1038/nbt1267
  12. M. R. Yeaman and N. Y. Yount, Pharmacol. Rev., 55, 27 (2003). https://doi.org/10.1124/pr.55.1.2
  13. S. C. Park, K. S. Hahm, and Y. Park, Int. J. Mol. Sci., 12, 5971 (2011). https://doi.org/10.3390/ijms12095971
  14. L. Guo, K. B. Lim, C. M. Poduje, M. Daniel, J. S. Gunn, M. Hackett, and S. I. Miller, Cell, 95, 189 (1998). https://doi.org/10.1016/S0092-8674(00)81750-X
  15. R. J. Pieters, C. J. Arnusch, and E. Breukink, Protein Pept. Lett., 16, 736 (2009). https://doi.org/10.2174/092986609788681841
  16. M. Wu, E. Maier, R. Benz, and R. E. Hancock, Biochemistry, 38, 7235 (1999). https://doi.org/10.1021/bi9826299
  17. S. C. Park, J. Y. Kim, C. Jeong, S. Yoo, Y. Park, and K. S. Hahm, Biochim. Biophys. Acta., 1808, 171 (2011). https://doi.org/10.1016/j.bbamem.2010.08.023
  18. P. Nicias, FEBS J., 276, 6483 (2009). https://doi.org/10.1111/j.1742-4658.2009.07359.x
  19. G. Kragol, S. Lovas, G. Varadi, B. A. Condie, R. Hoffmann, and L. Jr. Otvos, Biochemistry, 40, 3016 (2001). https://doi.org/10.1021/bi002656a
  20. J. H. Cho, B. H. Sung, and S. C. Kim, Biochim. Biophys. Acta, 1788, 1564 (2009).
  21. E. Gazit, I. R. Miller, P. C. Biggin, M. S. Sansom, and Y. Shai, J. Mol. Biol., 258, 860 (1996). https://doi.org/10.1006/jmbi.1996.0293
  22. M. Zasloff, Proc. Natl. Acad. Sci. USA, 84, 5449 (1987). https://doi.org/10.1073/pnas.84.15.5449
  23. D. G. Lee, H. N. Kim, Y. Park, H. K. Kim, B. H. Choi, C. H. Choi, and K. S. Hahm, Biochim. Biophys. Acta., 1598, 185 (2002). https://doi.org/10.1016/S0167-4838(02)00373-4
  24. Y. Park, S. C. Park, H. K. Park, S. Y. Shin, Y. Kim, and K. S. Hahm, Biopolymers, 88, 199 (2007). https://doi.org/10.1002/bip.20679
  25. S. C. Park, M. H. Kim, M. A. Hossain, S. Y. Shin, Y. Kim, L. Stella, J. D. Wade, Y. Park, and K. S. Hahm, Biochim. Biophys. Acta., 1778, 229 (2008). https://doi.org/10.1016/j.bbamem.2007.09.020
  26. R. I. Lehrer and T. Ganz, Curr. Opin. Immunol., 11, 23 (1999). https://doi.org/10.1016/S0952-7915(99)80005-3
  27. R. E. Hancock, Lancet, 349, 418 (1999).
  28. A. Weinberg, S. Krisanaprakornkit, and B. A. Dale, Crit. Rev. Oral Biol. Med., 9, 399 (1998). https://doi.org/10.1177/10454411980090040201
  29. C. Subbalakshmi and N. Sitaram, FEMS Microbiol. Lett., 160, 91 (1998). https://doi.org/10.1111/j.1574-6968.1998.tb12896.x
  30. C. H. Hsu, C. Chen, M. L. Jou, A. Y. Lee, Y. C. Lin, Y. P. Yu, W. T. Huang, and S. H. Wu, Nucleic Acids Res., 33, 4053 (2005). https://doi.org/10.1093/nar/gki725
  31. E. Rubinchik, D. Dugourd, T. Algara, C. Pasetka, and H. D. Friedland, Int. J. Antimicrob. Agents, 34, 457 (2009). https://doi.org/10.1016/j.ijantimicag.2009.05.003
  32. A. T. Yeung, S. L. Gellatly, and R. E. Hancock, Cell. Mol. Life Sci., 68, 2161 (2011). https://doi.org/10.1007/s00018-011-0710-x
  33. M. Zaiou, J. Mol. Med., 85, 317 (2007). https://doi.org/10.1007/s00109-006-0143-4