References
- R. M. Klevens, J. R. Edwards, C. L. Richards, T. C. Jr Horan, R. P. Gaynes, D. A. Pollock, and D. M. Cardo, Public Health Rep., 122, 160 (2007).
- K. Yuji, G. Oiso, T. Matsumura, N. Murashige, and M. Kami, Clin. Infect. Dis., 52, 422 (2011).
- P. Nordmann, L. Poirel, T. R. Walsh, and D. M. Livermore, Trends Microbiol., 19, 588 (2011). https://doi.org/10.1016/j.tim.2011.09.005
- L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, Nat. Rev. Microbiol., 2, 95 (2004). https://doi.org/10.1038/nrmicro821
- P. S. Stewart and J. W. Costerton, Lancet, 358, 135 (2001). https://doi.org/10.1016/S0140-6736(01)05321-1
- N. P. O'Grady, M. Aexander, E. P. Dellinger, J. L. Gerberding, S. O. Heard, D. G. Maki, and H. Masur, et al. MMWR Recomm. Rep., 51, 129 (2002).
- M. Zasloff, Nature, 415, 389 (2002). https://doi.org/10.1038/415389a
- J. J. Oppenheim, A. Biragyn, L. W. Kwak, and D. Yang, Ann. Rheum. Dis., 62, 1721 (2003).
- H. Steiner, D. Hultmark, A. Engström, H. Bennich, and H. G. Boman, Nature, 292, 246 (1981). https://doi.org/10.1038/292246a0
- Y. Shai, Biopolymers, 66, 236 (2002). https://doi.org/10.1002/bip.10260
- R. E. Hancock and H. G. Sahl, Nat. Biotechnol., 24, 1551 (2006). https://doi.org/10.1038/nbt1267
- M. R. Yeaman and N. Y. Yount, Pharmacol. Rev., 55, 27 (2003). https://doi.org/10.1124/pr.55.1.2
- S. C. Park, K. S. Hahm, and Y. Park, Int. J. Mol. Sci., 12, 5971 (2011). https://doi.org/10.3390/ijms12095971
- L. Guo, K. B. Lim, C. M. Poduje, M. Daniel, J. S. Gunn, M. Hackett, and S. I. Miller, Cell, 95, 189 (1998). https://doi.org/10.1016/S0092-8674(00)81750-X
- R. J. Pieters, C. J. Arnusch, and E. Breukink, Protein Pept. Lett., 16, 736 (2009). https://doi.org/10.2174/092986609788681841
- M. Wu, E. Maier, R. Benz, and R. E. Hancock, Biochemistry, 38, 7235 (1999). https://doi.org/10.1021/bi9826299
- S. C. Park, J. Y. Kim, C. Jeong, S. Yoo, Y. Park, and K. S. Hahm, Biochim. Biophys. Acta., 1808, 171 (2011). https://doi.org/10.1016/j.bbamem.2010.08.023
- P. Nicias, FEBS J., 276, 6483 (2009). https://doi.org/10.1111/j.1742-4658.2009.07359.x
- G. Kragol, S. Lovas, G. Varadi, B. A. Condie, R. Hoffmann, and L. Jr. Otvos, Biochemistry, 40, 3016 (2001). https://doi.org/10.1021/bi002656a
- J. H. Cho, B. H. Sung, and S. C. Kim, Biochim. Biophys. Acta, 1788, 1564 (2009).
- E. Gazit, I. R. Miller, P. C. Biggin, M. S. Sansom, and Y. Shai, J. Mol. Biol., 258, 860 (1996). https://doi.org/10.1006/jmbi.1996.0293
- M. Zasloff, Proc. Natl. Acad. Sci. USA, 84, 5449 (1987). https://doi.org/10.1073/pnas.84.15.5449
- D. G. Lee, H. N. Kim, Y. Park, H. K. Kim, B. H. Choi, C. H. Choi, and K. S. Hahm, Biochim. Biophys. Acta., 1598, 185 (2002). https://doi.org/10.1016/S0167-4838(02)00373-4
- Y. Park, S. C. Park, H. K. Park, S. Y. Shin, Y. Kim, and K. S. Hahm, Biopolymers, 88, 199 (2007). https://doi.org/10.1002/bip.20679
- S. C. Park, M. H. Kim, M. A. Hossain, S. Y. Shin, Y. Kim, L. Stella, J. D. Wade, Y. Park, and K. S. Hahm, Biochim. Biophys. Acta., 1778, 229 (2008). https://doi.org/10.1016/j.bbamem.2007.09.020
- R. I. Lehrer and T. Ganz, Curr. Opin. Immunol., 11, 23 (1999). https://doi.org/10.1016/S0952-7915(99)80005-3
- R. E. Hancock, Lancet, 349, 418 (1999).
- A. Weinberg, S. Krisanaprakornkit, and B. A. Dale, Crit. Rev. Oral Biol. Med., 9, 399 (1998). https://doi.org/10.1177/10454411980090040201
- C. Subbalakshmi and N. Sitaram, FEMS Microbiol. Lett., 160, 91 (1998). https://doi.org/10.1111/j.1574-6968.1998.tb12896.x
- C. H. Hsu, C. Chen, M. L. Jou, A. Y. Lee, Y. C. Lin, Y. P. Yu, W. T. Huang, and S. H. Wu, Nucleic Acids Res., 33, 4053 (2005). https://doi.org/10.1093/nar/gki725
- E. Rubinchik, D. Dugourd, T. Algara, C. Pasetka, and H. D. Friedland, Int. J. Antimicrob. Agents, 34, 457 (2009). https://doi.org/10.1016/j.ijantimicag.2009.05.003
- A. T. Yeung, S. L. Gellatly, and R. E. Hancock, Cell. Mol. Life Sci., 68, 2161 (2011). https://doi.org/10.1007/s00018-011-0710-x
- M. Zaiou, J. Mol. Med., 85, 317 (2007). https://doi.org/10.1007/s00109-006-0143-4