폴리에틸렌이민이 함침된 흄드 실리카 입자를 이용한 이산화탄소 흡착 소재의 제조 및 특성

Synthesis and Characterization of Carbon Dioxide Sorbent by using Polyethyleneimine Impregnated Fumed Silica Particles

  • 황하수 (한국생산기술연구원 패키징기술센터) ;
  • 박인 (한국생산기술연구원 패키징기술센터) ;
  • 이일기 (한국생산기술연구원 패키징기술센터) ;
  • 최원준 (한국생산기술연구원 패키징기술센터) ;
  • 이상일 (세계김치연구소) ;
  • 이준영 (한국생산기술연구원 패키징기술센터)
  • Hwang, Ha Soo (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Park, In (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Lee, Il Ki (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Choi, Won Jun (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Lee, Sang Il (World Institute of Kimchi) ;
  • Lee, Jun-Young (Korea Packaging Center, Korea Institute of Industrial Technology)
  • 발행 : 2012.08.10

초록

This paper presents an easy way to prepare carbon dioxide sorbent by using commercially available fumed silica particles (AEROSIL). AEROSIL was impregnated with various concentration of polyethyleneimine (PEI) in methanol and $CO_2$ capture ability was analyzed by thermo gravity analysis (TGA). The $CO_2$ adsorption capacity of 50 wt% PEI-impregnated AEROSIL was 126.2 mg/g-sorbent at $75^{\circ}C$ and this capacity was substantially higher than that of the mesoporous silica such as HMS (101.0 mg/g-sorbent) and MSU-J (66.1 mg/g-sorbent).

This paper presents an easy way to prepare carbon dioxide sorbent by using commercially available fumed silica particles (AEROSIL). AEROSIL was impregnated with various concentration of polyethyleneimine (PEI) in methanol and $CO_2$ capture ability was analyzed by thermo gravity analysis (TGA). The $CO_2$ adsorption capacity of 50 wt% PEI-impregnated AEROSIL was 126.2 mg/g-sorbent at $75^{\circ}C$ and this capacity was substantially higher than that of the mesoporous silica such as HMS (101.0 mg/g-sorbent) and MSU-J (66.1 mg/g-sorbent).

키워드

참고문헌

  1. K. M. Lee, and Y. M. Jo, J. Korean Ind. Eng. Chem., 19, 533 (2008).
  2. J. K. Jeon, Y. K. Park, and K. Chue, J. KOSAE, 20, 99 (2004).
  3. N. D. Hutson, Chem. Mater., 16, 4135 (2004). https://doi.org/10.1021/cm040060u
  4. V. Sebastian, I. Kumakiri, R. Bredesen, and M. Menendez, J. Membr. Sci., 292, 92 (2007). https://doi.org/10.1016/j.memsci.2007.01.017
  5. G. Calleja, A. Jimenez, J. Pau, L. Dominguez, and P. Pbrez, Gas Sep. Purif., 8, 247 (1994). https://doi.org/10.1016/0950-4214(94)80005-7
  6. Y. J. Yoo, H. S. Kim, R. Singh, P. Xiao, P. A. Webley, and A. L. Chaffee, J. Korean Ind. Eng. Chem., 20, 663 (2009).
  7. K. S. Walton, M. B. Abney, and M. D. Levan, Micropor. Mesopor. Mater., 91, 78 (2006). https://doi.org/10.1016/j.micromeso.2005.11.023
  8. R. V. Siriwardane, M. S. Shen, E. P. Fisher, and J. A. Poston, Energy Fuels, 15, 279 (2001). https://doi.org/10.1021/ef000241s
  9. C. Chen, W. J. Son, K. S. You, J. W. Ahn, and W. S. Ahn, Chem. Eng. J., 161, 46 (2010). https://doi.org/10.1016/j.cej.2010.04.019
  10. X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, and S. Komarneni, Chem. Eng. J., 168, 918 (2011). https://doi.org/10.1016/j.cej.2011.01.066
  11. A. Karkamkar, S. S. Kim, and T. J. Pinnavaia, Chem. Mater., 15, 11 (2003). https://doi.org/10.1021/cm020867r
  12. D. I. Jang, K. S. Cho, and S. J. Park, J. Korean Ind. Eng. Chem., 20, 658 (2009).
  13. I. Park, H. G. Peng, D. W. Gidley, S. Xue, and T. J. Pinnavaia, Chem. Mater., 18, 650 (2006). https://doi.org/10.1021/cm051768r