Synthesis and Characterization of Carbon Dioxide Sorbent by using Polyethyleneimine Impregnated Fumed Silica Particles

폴리에틸렌이민이 함침된 흄드 실리카 입자를 이용한 이산화탄소 흡착 소재의 제조 및 특성

  • Hwang, Ha Soo (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Park, In (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Lee, Il Ki (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Choi, Won Jun (Korea Packaging Center, Korea Institute of Industrial Technology) ;
  • Lee, Sang Il (World Institute of Kimchi) ;
  • Lee, Jun-Young (Korea Packaging Center, Korea Institute of Industrial Technology)
  • 황하수 (한국생산기술연구원 패키징기술센터) ;
  • 박인 (한국생산기술연구원 패키징기술센터) ;
  • 이일기 (한국생산기술연구원 패키징기술센터) ;
  • 최원준 (한국생산기술연구원 패키징기술센터) ;
  • 이상일 (세계김치연구소) ;
  • 이준영 (한국생산기술연구원 패키징기술센터)
  • Published : 2012.08.10

Abstract

This paper presents an easy way to prepare carbon dioxide sorbent by using commercially available fumed silica particles (AEROSIL). AEROSIL was impregnated with various concentration of polyethyleneimine (PEI) in methanol and $CO_2$ capture ability was analyzed by thermo gravity analysis (TGA). The $CO_2$ adsorption capacity of 50 wt% PEI-impregnated AEROSIL was 126.2 mg/g-sorbent at $75^{\circ}C$ and this capacity was substantially higher than that of the mesoporous silica such as HMS (101.0 mg/g-sorbent) and MSU-J (66.1 mg/g-sorbent).

This paper presents an easy way to prepare carbon dioxide sorbent by using commercially available fumed silica particles (AEROSIL). AEROSIL was impregnated with various concentration of polyethyleneimine (PEI) in methanol and $CO_2$ capture ability was analyzed by thermo gravity analysis (TGA). The $CO_2$ adsorption capacity of 50 wt% PEI-impregnated AEROSIL was 126.2 mg/g-sorbent at $75^{\circ}C$ and this capacity was substantially higher than that of the mesoporous silica such as HMS (101.0 mg/g-sorbent) and MSU-J (66.1 mg/g-sorbent).

Keywords

References

  1. K. M. Lee, and Y. M. Jo, J. Korean Ind. Eng. Chem., 19, 533 (2008).
  2. J. K. Jeon, Y. K. Park, and K. Chue, J. KOSAE, 20, 99 (2004).
  3. N. D. Hutson, Chem. Mater., 16, 4135 (2004). https://doi.org/10.1021/cm040060u
  4. V. Sebastian, I. Kumakiri, R. Bredesen, and M. Menendez, J. Membr. Sci., 292, 92 (2007). https://doi.org/10.1016/j.memsci.2007.01.017
  5. G. Calleja, A. Jimenez, J. Pau, L. Dominguez, and P. Pbrez, Gas Sep. Purif., 8, 247 (1994). https://doi.org/10.1016/0950-4214(94)80005-7
  6. Y. J. Yoo, H. S. Kim, R. Singh, P. Xiao, P. A. Webley, and A. L. Chaffee, J. Korean Ind. Eng. Chem., 20, 663 (2009).
  7. K. S. Walton, M. B. Abney, and M. D. Levan, Micropor. Mesopor. Mater., 91, 78 (2006). https://doi.org/10.1016/j.micromeso.2005.11.023
  8. R. V. Siriwardane, M. S. Shen, E. P. Fisher, and J. A. Poston, Energy Fuels, 15, 279 (2001). https://doi.org/10.1021/ef000241s
  9. C. Chen, W. J. Son, K. S. You, J. W. Ahn, and W. S. Ahn, Chem. Eng. J., 161, 46 (2010). https://doi.org/10.1016/j.cej.2010.04.019
  10. X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, and S. Komarneni, Chem. Eng. J., 168, 918 (2011). https://doi.org/10.1016/j.cej.2011.01.066
  11. A. Karkamkar, S. S. Kim, and T. J. Pinnavaia, Chem. Mater., 15, 11 (2003). https://doi.org/10.1021/cm020867r
  12. D. I. Jang, K. S. Cho, and S. J. Park, J. Korean Ind. Eng. Chem., 20, 658 (2009).
  13. I. Park, H. G. Peng, D. W. Gidley, S. Xue, and T. J. Pinnavaia, Chem. Mater., 18, 650 (2006). https://doi.org/10.1021/cm051768r