KF/MgO 촉매를 이용한 대두유의 전이에스테르화 반응

Transesterification Reaction of Soybean Oil over KF/MgO Catalyst

  • 조용범 (서울시립대학교 에너지환경시스템 공학과) ;
  • 전종기 (공주대학교 화학공학과) ;
  • 박성훈 (순천대학교 환경공학과) ;
  • 박영권 (서울시립대학교 에너지환경시스템 공학과)
  • Jo, Yongbeom (Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Park, Young-Kwon (Graduate School of Energy and Environmental System Engineering, University of Seoul)
  • 발행 : 2012.06.10

초록

본 연구에서는 기존 MgO의 염기세기를 증가시켜 전이에스테르화 반응에 있어 보다 좋은 활성을 가지는 촉매를 만들고자 하였다. MgO를 실험실에서 제조한 후 지지체로 사용하였으며 염기세기를 증가시키기 위하여 KF를 함침법으로 담지하였다. BET, XRD, XRF, $CO_2$ TPO로 촉매의 특성분석을 하였고, 대두유과 메탄올을 사용하여 바이오디젤을 합성한 후 지방산메틸에스테르 함유량을 측정함으로써 촉매의 활성을 알아보았다. 결과적으로, KF를 30% 담지한 촉매가 활성이 가장 좋은 것으로 나타났다. 이는 전이에스테르화 반응에서 중간세기 염기도가 더 많이 관여하기 때문으로 보인다.

The basic strength of the MgO catalyst was enhanced by impregnating it with KF to synthesize a highly active catalyst for the bio-diesel production. To increase basicity, KF impregnated on synthesized MgO in laboratory. The synthesized catalyst was characterized using $N_2$ adsorption-desorption, X-Ray diffraction, X-Ray fluorescence, and $CO_2$ temperature programmed desorption analyses. Bio-diesel was produced from soybean and methanol and its fatty acid methyl ester content was measured to evaluate the activity of the catalyst. The catalyst impregnated with 30 wt% KF exhibited the highest activity, which was attributed to its abundant intermediate base site.

키워드

참고문헌

  1. Z. Helwani, M. R. Othman, N. Aziz, W. J. N. Fernando, and J. Kim, Fuel Process. Technol., 90, 1502 (2009). https://doi.org/10.1016/j.fuproc.2009.07.016
  2. H. Huo, M. Wang, C. Bloyd, and V. Putsche, Life-Cycle Assessment of Energy and Greenhouse Gas Effects of Soybean- Derived Biodiesel and Renewable Fuels, Argonne national lab., (2008).
  3. M. E. Borges and L. Díaz, Renew. Sust. Energ. Rev., 16, 2839 (2012). https://doi.org/10.1016/j.rser.2012.01.071
  4. A. P. Singh Chouhan and A. K. Sarma, Renew. Sust. Energ. Rev., 15, 4378 (2011). https://doi.org/10.1016/j.rser.2011.07.112
  5. D. E. Lopez, J. G. Goodwin Jr., D. A. Bruce, and E. Lotero., Appl Catal A : Gen, 295, 97 (2005). https://doi.org/10.1016/j.apcata.2005.07.055
  6. T. Wan, P. Yu, S. Gong, Q. Li, and Y. Luo, Korean J. Chem. Eng., 25, 998 (2008). https://doi.org/10.1007/s11814-008-0161-8
  7. Y. Fan, Q. Wang, X. Yang, J. Yao, and G. Wang, Chinese J. Chem. Eng., 17, 883 (2009). https://doi.org/10.1016/S1004-9541(08)60292-X
  8. H. J. Kim, K. E. Jeong, S. Y. Jeong, Y. K. Park, and J. K. Jeon, Clean Technol., 16, 12 (2010).
  9. Y. K Park, S. Y. Kim, H. Kim, K. Y. Jung, S. Y. Jeong, K. E. Jeong, and J. K. Jeon, Korean J. Chem. Eng., 27, 459 (2010). https://doi.org/10.1007/s11814-010-0086-x
  10. H. Hattori, Chem. Rev., 95, 537 (1995). https://doi.org/10.1021/cr00035a005
  11. X. Liang, S. Gao, J. Yang, and M. He, Renew. Energy, 34, 2215 (2009). https://doi.org/10.1016/j.renene.2009.01.009