Reaction Kinetics for Steam Reforming of Ethane over Ru Catalyst and Reactor Sizing

루테늄 촉매를 이용한 에탄의 수증기 개질 반응 Kinetics와 반응기 Sizing

  • Shin, Mi (Department of Chemical Engineering, Kongju National University) ;
  • Seong, Minjun (Department of Chemical Engineering, Kongju National University) ;
  • Jang, Jisu (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Kyungeun (Department of Chemical Engineering, Kongju National University) ;
  • Cho, Jung-Ho (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Young-Chul (Korea Gas Co. R & D Division) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • 신미 (공주대학교 화학공학부) ;
  • 성민준 (공주대학교 화학공학부) ;
  • 장지수 (공주대학교 화학공학부) ;
  • 이경은 (공주대학교 화학공학부) ;
  • 조정호 (공주대학교 화학공학부) ;
  • 이영철 (한국가스공사 연구개발원) ;
  • 박영권 (서울시립대학교 환경공학부) ;
  • 전종기 (공주대학교 화학공학부)
  • Published : 2012.04.10

Abstract

In this study, kinetics data was obtained for steam reforming reaction of ethane over the commercial ruthenium catalyst. The variables of ethane steam reforming were the reaction temperature, partial pressure of ethane, and steam/ethane mole ratio. Parameters for the power rate law kinetic model and the Langmuir-Hinshelwood model were obtained from the kinetic data. Also, sizing of steam reforming reactor was performed by using PRO/II simulator. The reactor size calculated by the power rate law kinetic model was bigger than that of using the Langmuir-Hinshelwood model for the same conversion of ethane. Reactor size calculated by the Langmuir-Hinshelwood model seems to be more suitable for the reactor design because the Langmuir-Hinshelwood model was more consistent with the experimental results.

상업용 루테늄 촉매 상에서 에탄의 수증기 개질 반응에 대한 kinetics 데이터를 얻기 위하여 반응온도, 에탄의 분압, 수증기/에탄의 비 등을 변화시키면서 반응 실험을 수행하였다. Kinetics 데이터를 사용하여 Power rate law kinetic model 과 Langmuir-Hinshelwood model의 parameter를 구하였다. 또한 kinetic model식을 적용하여 PRO/II를 이용한 공정 모사를 통해서 에탄의 수증기 개질 반응기 sizing을 수행하였다. 동일한 전환율을 얻기 위해서는 Power rate law model을 적용하였을 경우가 Langmuir-Hinshelwood model을 적용하였을 경우보다 개질 반응기의 부피가 더 큼을 알 수 있었다. Langmuir-Hinshelwood model에 의해 계산된 반응 속도가 반응 실험 결과에 의해 구해진 반응 속도와 더 잘 일치했기 때문에 Langmuir-Hinshelwood model을 적용하여 계산된 반응기의 크기가 실제 반응기 설계에 더 적절하다고 판단된다.

Keywords

References

  1. C. H. Park, K. S. Kim, J. W. Jun, S. Y. Cho, and Y. K. Lee, J. Korean Ind. Eng. Chem., 20, 186 (2009).
  2. A. J. Vizcaino, A. Carrero, and J. A. Calles, Int. J. Hydrogen Energy, 32, 1450 (2007). https://doi.org/10.1016/j.ijhydene.2006.10.024
  3. T. S. Christensen, Appl. Catal. A Gen., 138, 285 (1996). https://doi.org/10.1016/0926-860X(95)00302-9
  4. P. O. Graf, B. L. Mojet, J. G. van Ommen, and L. Lefferts, Appl. Catal. A Gen., 332, 310 (2007). https://doi.org/10.1016/j.apcata.2007.08.032
  5. J. H. Jeong, J. W. Lee, D. J. Seo, Y. Seo, W. L. Yoon, D. K. Lee, and D. H. Kim, Appl. Catal. A Gen., 302, 151(2006). https://doi.org/10.1016/j.apcata.2005.12.007
  6. L. P. R. Profeti, E. A. Ticianelli, and E. M. Assaf, Fuel, 87, 2076 (2008). https://doi.org/10.1016/j.fuel.2007.10.015
  7. K. M. Hardiman, T. T. Ying, A. A. Adesina, E. M. Kennedy, and B. Z. Dlugorski, Chem. Eng. J., 102, 119 (2004). https://doi.org/10.1016/j.cej.2004.03.005
  8. J. G. Seo, M. H. Youn, J. C. Jung, and I. K. Song, Int. J. Hydrogen Energy, 34, 5409 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.042
  9. T. Sperle, D. Chen, R. Lodeng, and A. Holmen, Appl. Catal. A Gen., 282, 195 (2005). https://doi.org/10.1016/j.apcata.2004.12.011
  10. B. T. Schadel, M. Duisberg, and O. Deutschmann, Catalysis Today, 142, 42 (2009). https://doi.org/10.1016/j.cattod.2009.01.008
  11. K. Hou and R. Hughes, Chem. Eng. J., 82, 311 (2001). https://doi.org/10.1016/S1385-8947(00)00367-3
  12. S. S. Maluf and E. M. Assaf, Fuel, 88, 1547 (2009). https://doi.org/10.1016/j.fuel.2009.03.025
  13. M. Leventa, D. J. Gunn, and M. A. El-Bousi, Int. J. Hydrogen Energy, 28, 945 (2003). https://doi.org/10.1016/S0360-3199(02)00195-7
  14. V. R. Choudhary and K. C. Mondal, Appl. Energy, 83, 1024 (2006). https://doi.org/10.1016/j.apenergy.2005.09.008
  15. Z. A. Aboosadi, M. R. Rahimpour, and A. Jahanmiri, Int. J. Hydrogen energy, 36, 2960 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.005
  16. M. Zeppieri, P. L. Villa, N. Verdone, M. Scarsella, and P. D. Filippis, Appl. Catal. A Gen., 387, 147 (2010). https://doi.org/10.1016/j.apcata.2010.08.017
  17. W. H. Lee, Master Dissertation, Kongju National University, Gongju, Korea (2011).
  18. Y. Zhan, D. Li, K. Nishida, T. Shishido, Y. Oumi, T. Sano, and K. Takehira, Appl. Catal. A Gen., 356, 231 (2009). https://doi.org/10.1016/j.apcata.2009.01.015
  19. D. Li, K. Nishida, Y. Zhan, T. Shishido, Y. Oumi, T. Sano, and K. Takehira, Appl. Clay Sci., 43, 49 (2009). https://doi.org/10.1016/j.clay.2008.07.014
  20. H. Chon and G. Seo, Introduction of Catalysis, 4th edition, 205, Hanrimwon, Korea (2002).