Effect of Adding Isopropylphenyl Diphenyl Phosphate on Isothermal Crystallization Behavior and Flame Retardancy of PLA Film

Isopropylphenyl Diphenyl Phosphate 첨가가 PLA필름의 등온결정화 거동과 방염특성에 미치는 영향

  • Kim, Moon-Sun (Bio/Nano-Fusion Material Research Center, Sungkyunkwan University) ;
  • Kim, Gyusun (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Byung-Woo (Department of Chemical Engineering, Sungkyunkwan University)
  • 김문선 (성균관대학교 바이오/나노융합재료연구센터) ;
  • 김규선 (성균관대학교 화학공학과) ;
  • 김병우 (성균관대학교 화학공학과)
  • Published : 2012.04.10

Abstract

In the study, the effects of $130{\sim}150^{\circ}C$ annealing condition and 1~10 wt% isopropylphenyl diphenyl phosphate (IPPP) on crystallization behavior and flame retardancy of a full name (PLA) film were determined. The crystallization kinetics of PLA films with adding 1, 5, and 10 wt% IPPP at $140^{\circ}C$ were higher than those at 130 and $150^{\circ}C$. The average crystallinity and crystallite size of PLA film with 1 wt% IPPP were 21.3% and 24.8 nm, respectively. With an increasing IPPP content, the crystallinity of PLA film increased and the crystallite size decreased. The burning rate lowered with an increasing IPPP content as well.

본 연구에서는 $130{\sim}150^{\circ}C$ 어닐링조건과 1~10 wt%의 isopropylphenyl diphenyl phosphate (IPPP) 첨가량이 PLA필름의 결정화거동과 방염특성에 미치는 영향을 평가하였다. IPPP를 1, 5, 10 wt% 첨가한 PLA필름은 $140^{\circ}C$에서 결정화속도가 가장 빨랐으며 등온조건에서는 1 wt% IPPP를 첨가한 PLA필름의 결정화속도가 5, 10 wt%의 IPPP를 첨가한 PLA필름보다 빨랐다. IPPP를 1 wt% 첨가한 PLA필름의 평균 결정화도는 21.3%이며 평균 결정크기는 24.8 nm였다. IPPP의 첨가량이 증가할수록 결정화도는 증가하고 결정크기는 작아졌다. 또 연소속도는 IPPP의 첨가량이 증가할수록 낮아졌다.

Keywords

References

  1. S. S. Ray and M. Okamoto, Macromol. Rapid Commun., 24, 815 (2003). https://doi.org/10.1002/marc.200300008
  2. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  3. J. Lunt, Polym. Degrad. Stab., 59, 145 (1998). https://doi.org/10.1016/S0141-3910(97)00148-1
  4. Q. Fang and M. A. Hanna, Ind. Crop. Prod., 10, 47 (1999). https://doi.org/10.1016/S0926-6690(99)00009-6
  5. N. Kawamoto, A. Sakai, T. Horikoshi, T. Urushihara, and E. Tobita, J. Appl. Polym. Sci., 103, 244 (2007). https://doi.org/10.1002/app.25185
  6. M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, and E. Wintermantel, J. Appl. Polym. Sci., 90, 1731 (2003). https://doi.org/10.1002/app.12549
  7. W. Zhai, Y. Ko, W. Zhu, A. Wong, and C. B. Park, Int. J. Mol. Sci., 10, 5381 (2009). https://doi.org/10.3390/ijms10125381
  8. H. Li and M. A. Huneault, Polymer, 48, 6855 (2007). https://doi.org/10.1016/j.polymer.2007.09.020
  9. N. P. G. Suardana, M. S. Ku, and J. K. Lim, Mater. Design, 32, 1990 (2011). https://doi.org/10.1016/j.matdes.2010.11.069
  10. J. Kim, M. S. Kim, and B. W. Kim, Korean Chem. Eng. Res., 49, 611 (2011). https://doi.org/10.9713/kcer.2011.49.5.611
  11. G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris, and G. P. Karayannidis, Thermochim. Acta., 427, 117 (2005). https://doi.org/10.1016/j.tca.2004.09.001
  12. H. Xiao, L. Yang, X. Ren, T. Jiang, and J. T. Yeh, Polym. Composite, 31, 2057 (2010). https://doi.org/10.1002/pc.21004
  13. L. T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci., 33, 820 (2008). https://doi.org/10.1016/j.progpolymsci.2008.05.004
  14. S. N. Danilchenko, O. G. Kukharenko, C. Moseke, I. Y. Protsenko, L. F. Sukhodub, and B. Sulkio-Cleff, Crystal. Res. Technol., 37, 1234 (2002). https://doi.org/10.1002/1521-4079(200211)37:11<1234::AID-CRAT1234>3.0.CO;2-X
  15. H. C. Kim, H. S. Lee, H. Y. Kim, P. K. Pak, and B. O. Lee, Polymer(Korea), 23, 25 (1999).
  16. H. W. Xiao, P. Li, X. Ren, T. Jiang, and J. T. Yeh, J. Appl. Polym. Sci., 118, 3558 (2010). https://doi.org/10.1002/app.32728
  17. A. M. Harris and E. C. Lee, J. Appl. Polym. Sci., 107, 2246 (2008). https://doi.org/10.1002/app.27261
  18. A. Du, D. Koo, M. Ziegler, and R. A. Cairncross, Polym. Phys., 49, 873 (2011). https://doi.org/10.1002/polb.22258