Biogas Resource from Foodwaste Leachate Using UASB(Upflow Anaerobic Sludge Blanket)

UASB를 이용한 음폐수의 Biogas 자원화

  • Min, Boo-Ki (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Chang-Hyun (Department of Environmental Engineering, Chungbuk National University) ;
  • Kim, Jae-Yong (Department of Environmental Engineering, Chungbuk National University)
  • Published : 2012.02.10

Abstract

In this study, we operated a UASB (upflow anaerobic sludge blanket) reactor by using foodwaste leachate as a raw material with the method of Mesophilic Digestion ($35{\pm}0.5^{\circ}C$) and Thermophilic Digestion ($55{\pm}0.5^{\circ}C$). During 20 days of operating time with the Mesophilic Digestion, the recirculation ratio of effluent was stepwisely changed in every five days. Thermophilic Digestion was carried out at the same condition for Mesophilic Digestion. Results showed that the organic removal efficiency of Mesophilic Digestion was over 90% and the yield of methane production was from 66 up to 70%. The organic removal efficiency of Thermophilic Digestion was over 80% and the yield of methane production was between 62 to 68%. Also, when UASB reactor was operating to over the 3Q effluent recirculation, the experiment could be carried out economically and stably.

본 연구에서는 UASB 반응조를 이용하여 음폐수 탈리액을 원료로 하여 중온소화($35{\pm}0.5^{\circ}C$)와 고온소화($55{\pm}0.5^{\circ}C$)법을 통한 운전을 실시하였다. 20일 동안은 중온소화로 운전을 하면서 5일 간격으로 유출수 재순환 비를 단계적으로 변화시켰다. 고온소화 역시 중온소화와 마찬가지 조건으로 운전을 실시하였다. 실험결과 중온소화 시 유기물제거율은 90% 이상, 메탄수율은 약 66~70%로 나타났다. 고온소화 시 유기물제거율은 80% 이상, 메탄수율은 약 62~68%로 나타났다. 또한, 유출수 반송을 3Q 이상으로 반송하여 운전할 경우 경제적이며 안정적인 운전을 할 수 있었다.

Keywords

References

  1. H. S. Shim, S. K. Han, S. H. Kim, and J. H. Youn, Journal of Korean Soild Waste Engineering Society, 8, 78 (2000).
  2. S. D. Kim, G. S. Kim, and S. J. Kim, Journal of Korean Society of Urban Environment, 6, 22 (2008).
  3. H. S. Shim, H. S. Han, S. H. Kim, and J. H. Youn, Journal of Korean Solid of Wastes Engineering Society, 8, 4 (2000).
  4. D. H. Kim, H. S. Oh, and S. E. Oh, Journal of Korean Society of Waste Management, 25, 8 (2008).
  5. C. H. Won, J. H. Kwon, and J. M. Rim, Journal of Korea Organic Resource Recycling Association, 17, 1 (2009).
  6. D. Zhow, Y. Chen, and X. Ming, Water Sci. Technol., 24, 123 (1991).
  7. S. K. Han, H. K. Yoon, J. H. Kim, D. H. Ahn, and J. Y. Kim, Korea Society of Waste Management, 27, 8 (2010).
  8. H. Bouallagui, R. BenCheikh, L. Marouani, and M. Hamdi, Bioresour. Technol., 86, 85 (2003). https://doi.org/10.1016/S0960-8524(02)00097-4
  9. G. Lettinga and P. Hulshoff, Water Sci. Technol., 24, 87 (1991).
  10. P. Chudoba, M. Pannier, and R. Pujol, Water Sci. Technol., 38, 233 (1998).
  11. F. Rogalla, M. Badard, F. Hansen, and P. Dansholm, Water Sci. Technol., 25, 1067 (1992).