Synthesis of Submicron Silver Particle Using Room Temperature Ionic Liquids

상온 이온성 액체를 이용한 미세 은 입자 제조

  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 유계상 (서울과학기술대학교 화학공학과)
  • Published : 2012.02.10

Abstract

Submicron silver particles were synthesized by chemical reduction with various room temperature ionic liquids. The size and distribution of silver particles were significantly affected by the anion type of ionic liquids and this is mainly attributed to the different abilities of the anions to coordinate with the silver particle, leading to various coagulation of silver particles. Among ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate was the most effective to synthesize submicron silver particles.

다양한 종류의 상온 이온성액체를 이용한 화학적 환원법으로 미세 은 입자를 제조하였다. 이온성액체의 음이온의 종류에 따라 제조된 은 입자는 다양한 크기와 입도분포를 가지는 것이 관찰되었으며, 이는 이온성액체의 음이온이 은 입자들의 결합에 영항을 주기 때문이다. 여러 가지 이온성액체 중에서 미세 은입자를 제조하는데 있어서 가장 효과적인 이온성액체는 1-Butyl-3-methylimidazolium hexafluorophosphate였다.

Keywords

References

  1. M. Yoon, Y. Kim, V. Volkov, H. J. Song, Y. J. Park, and I. W. Park, Mater. Chem. Phys., 91, 104 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.059
  2. K. Mallick, M. J. Witcom, and M. S. Scurrell, Mater. Sci. Eng. C., 26, 87 (2006). https://doi.org/10.1016/j.msec.2005.06.004
  3. S. He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang, and H. Gao, Langmuir, 17, 1571 (2001). https://doi.org/10.1021/la001239w
  4. A. Manna, T. Imae, M. Iida, and N. Hisamatsu, Langmuir, 17, 6000 (2001). https://doi.org/10.1021/la010389j
  5. Y. Sun and Y. Xia, Science, 298, 2176 (2002). https://doi.org/10.1126/science.1077229
  6. E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schats, J. Am. Chem. Soc., 124, 1518 (2002).
  7. M. Maillard, S. Gieorgio, and M. P. Pileni, J. Phys. Chem., B, 107, 2466 (2003). https://doi.org/10.1021/jp022357q
  8. N. Vigneshwaran, R. P. Nachane, and R. H. Balasubramanya, Carbohydr. Res., 341, 2012 (2006). https://doi.org/10.1016/j.carres.2006.04.042
  9. D. O. Yener, J. Sindel, C. A. Randall, and J. H. Adair, Langmuir, 18, 8692 (2002). https://doi.org/10.1021/la011229a
  10. K. Tori goe, Y. Nakajima, and K. Esumi, J. Phys. Chem., 97, 8304 (1993). https://doi.org/10.1021/j100133a029
  11. H. H. Nersisyan, J. H. Lee, H. T. Son, C. W. Won, and D. Y. Maeng, Mat. Res. Bull., 38, 949 (2003). https://doi.org/10.1016/S0025-5408(03)00078-3
  12. W. Songping and M. Shuyuan, Mat. Chem. Phys., 89, 423 (2005). https://doi.org/10.1016/j.matchemphys.2004.09.026
  13. H. Y. Lee and J. K. Oh, J. Korean Inst. Resources Recycling, 14, 21 (2005).
  14. H. Y. Lee, J. Korean Inst. Resources Recycling, 15, 19 (2006).
  15. C. W. Won and H. H. Lee, J. Korean Powder Metall. Inst., 13, 278 (2006). https://doi.org/10.4150/KPMI.2006.13.4.278
  16. H. Lee, J. S. Lee, and H. S. Kim, Appl. Chem. Eng., 21, 129 (2010).
  17. F.-H. Yeh, C.-C. Tai, J.-F. Huang, and I.-W. Sun, J. Phys. Chem. B, 10, 5215 (2006).
  18. D. Dorjnamjin, M. Ariunaa, and Y. K. Shim, Int. J. Mol. Sci., 9, 807 (2008). https://doi.org/10.3390/ijms9050807
  19. T. Y. Kim, W. J. Kim, S. H. Hong, J. E. Kim, and K. S. Suh, Angew. Chem. Int. Ed., 48, 3806 (2009). https://doi.org/10.1002/anie.200806379
  20. H. Y. Wang, Y. A. Gao, M. W. Zhao, and L. Q. Zheng, Chin. Chem. Lett., 21, 872 (2010). https://doi.org/10.1016/j.cclet.2010.01.036