Characterization of Erwinia tasmaniensis Isolated from Nuruk Producing Alginate Lyase

누룩으로부터 분리한 알긴산 분해 효소 생산 균주인 Erwinia tasmaniensis의 특성

  • Kim, Hyun Ji (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Lee, Sung-Mok (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 김현지 (신라대학교 의생명과학대학 생명공학과) ;
  • 이성목 (신라대학교 의생명과학대학 생명공학과) ;
  • 김성구 (부경대학교 수산과학대학 생물공학과) ;
  • 이재화 (신라대학교 의생명과학대학 생명공학과)
  • Published : 2012.02.10

Abstract

Oligosaccharides production showed various biological activities in vivo like functional foods and industrial materials utilized available within many practical applications which have obtained from the degradation of alginate. Alginate is rich in the main component of seaweeds especially the brown algae. We investigated what degrading alginate from seaweeds to make alginate oligosaccharides can utilize in various fields using enzyme secreting Erwinia tasmaniensis. In this study, we observed an optimal culture condition of E. tasmaniensis, and characteristics of alginate lyase secreting E. tasmaniensis. These bacteria, E. tasmaniensis, were isolated from Nuruk. In this case, a suitable growth factor for E. tasmaniensis was culture it for 36 h in broth media on concentration of 1.0% (w/v) alginate. The enzyme showed the highest level of alginate lyase activity when cultured on broth media containing 1.0% (w/v) sodium alginate for 72 h. Optimal condition of pH, temperature and duration time for alginate lyase activity were found to be pH 6.0, $20^{\circ}C$ and 60 min, respectively.

알긴산 올리고당은 생체에 다양한 생리활성효과를 나타내는 기능성 식품의 소재나 고부가가치 재료로서 활용 가능성이 높아 여러 응용 범위 내에서 사용될 수 있다. 알긴산은 해조류의 주요 구성성분으로 주로 갈조류에 많이 존재한다. 해조류로부터 다양하게 활용이 가능한 알긴산 올리고당을 제조하기 위해 Erwinia tasmaniensis 균주가 생성하는 효소를 이용하여 알긴산을 효소적으로 분해하고자 하였다. 따라서 본 연구에서는 E. tasmaniensis의 최적 배양조건과 균주가 생성해내는 알긴산 분해 효소의 성질 및 특성을 알아보았다. 실험 결과, 이 균주의 최적 배양을 위한 배지 내 알긴산의 최적 농도는 1.0%, 최적 시간은 36 h이었으며, 알긴산 분해 효소의 활성은 알긴산이 1.0% 포함된 배지에서 72 h동안 배양했을 때 가장 높았다. 이 효소의 최적 pH는 6.0, 최적 온도는 $20^{\circ}C$로 확인되었다. 또한 효소의 활성은 $20^{\circ}C$에서 60 min까지 지속됨을 확인했다.

Keywords

References

  1. D. S. Lee, H. R. Kim, D. M. Cho, T. J. Nam, and J. H. Pyeun, J. Kor. Fish. Soc., 31, 1 (1998).
  2. J. I. Park, H. C. Woo, and J. H. Lee, Korean Chem. Eng. Res., 46, 833 (2008).
  3. S.-M. Lee, J.-H. Kim, H. Y. Cho, H. Joo, and J. H. Lee, J. Korean Ind. Eng. Chem., 20, 517 (2009).
  4. M. O. Yoon, S. C. Lee, J. W. Rhim, and J. M. Kim, J Korean Soc Food Sci Mutr., 33, 747 (2004). https://doi.org/10.3746/jkfn.2004.33.4.747
  5. D. S. Joo, S. Y. Cho, and E. H. Lee, Kor. J. Biotechnol. Bioeng., 13, 477 (1998).
  6. B. Hu, Q. Gong, Y. Wang, Y. Ma, J. Li, and W. Yu, Anaerobe., 12, 260 (2006). https://doi.org/10.1016/j.anaerobe.2006.07.005
  7. J. H. Lee, M. J. Bae, Y. C. Kim, and S. W. Nam, Kor. J. Microbiol. Biotechnol., 37, 350 (2009).
  8. J. H. Lee and E. Y. Lee, Kor. J. Life Sci., 13, 718 (2003). https://doi.org/10.5352/JLS.2003.13.5.718
  9. H.-M. Chen, L. Zheng, and X.-J. Yan, Food Technol. Biotechnol., 43, 29 (2005).
  10. S. J. Horn, I. M. Aasen, and K. Ostgaard, J. Ind. Microbiol. Biotechnol., 25, 249 (2009).
  11. S.-L. Kim, W.-J. Kim, S.-Y. Lee, and S. M Byun, J. Korean Agric. Chem. Soc., 27, 139 (1984).
  12. S.-K. Paik, H.-S. Yun, K.-H. Sa, I.-S. Kim, I.-K. Rhee, H.-D. Park, C.-B. Yu, and I. Jin, Kor. J. Microbiol. Biotechnol., 31, 63 (2003)
  13. J.-Y. Kong, New Informations of Oligosaccharides, 359, Yelim media, Seoul (2007)
  14. M.-K. Jang, O. H. Lee, K. H. Yoo, D.-G. Lee, and S. H. Lee, J. life. Sci., 17, 1601 (2007). https://doi.org/10.5352/JLS.2007.17.11.1601
  15. J.-Y. Kong, S.-K. Bae, S.-H. Hwang, S.-D. Ha, H.-T. Kim, S.-K. Kim, and B.-J. Kim, Kor. J. Biotechnol. Bioeng., 11, 37 (1996).
  16. T. Suzuki, K. Nagai, Y. Toshie, T. Shirai, and T. Hirono, Nippon Suisan Gakkaishi., 59, 879 (1933).
  17. D. S. Lee, T. J. Nam, and J. H. Pyeun, J. Kor. Fish Soc., 31, 309 (1998).
  18. I. H. Kim, D. S. Lee, J. Y. Kwon, M. T. Kwon, and T. J. Nam, J. Kor. Fish Soc., 36, 568 (2003).
  19. S.-M. Lee and J.-H. Lee, Bioresour. Technol., 102, 5962 (2011). https://doi.org/10.1016/j.biortech.2011.02.006
  20. O. J. Kim, D.-G. Lee, S.-M. Lee, S. J. Lee, H. J. Do, H. J. Park, A. Kim, J.-H. Lee, and J.-M. Ha, Kor. J. Microbiol. Biotechnol., 38, 144 (2010).
  21. Y. Yonemoto, K. Mutata, A. Kimura, H. Yamaguchi, and K. Okayama, J. Ferm Bioeng., 72, 152 (1991). https://doi.org/10.1016/0922-338X(91)90208-X
  22. M. H. Uo, D. S. Joo, and S. Y. Cho, J. Korean Soc. Food Sci. Nutr., 35, 109 (2006). https://doi.org/10.3746/jkfn.2006.35.1.109
  23. S. Joo, S. Y. Cho, and E. H. Lee, Kor. J. Appl. Microbiol. Biotechnol., 21, 207 (1993).
  24. M. H. Uo, D. S. Joo, and S. Y. Cho, J. Korean Soc. Food Sci. Nutr., 35, 109 (2006). https://doi.org/10.3746/jkfn.2006.35.1.109
  25. H. K. Kim, J. C. Lee, N. H. Kang, S. H. Kim, J. G. Kim, and K. C. Chung, J. Life Sci., 17, 625 (2007). https://doi.org/10.5352/JLS.2007.17.5.625
  26. Y.-O. Kim, G.-T. Kim, H.-K. Kim, D.-K. Kim, S.-H. Huh, and I.-S. Kim, J. Korean Fish. Soc., 29, 637 (1996).
  27. D.-S. Joo, J.-S. Lee, J.-J. Park, S.-Y. Cho, C.-B. Ahn, and E.-H. Lee, Kor. J. Appl. Microbiol. Biotechnol., 23, 432 (1995).
  28. D.-S. Joo, S.-Y. Cho, and E.-H. Lee, J. Korean Soc. Food Nutr., 22, 240 (1993).
  29. T. Kobayashi, K. Uchimura, M. Miyazaki, Y. Nogi, and K. Horikoshi, Extremophiles, 13, 121 (2009). https://doi.org/10.1007/s00792-008-0201-7
  30. M. H. Uo, D. S. Joo, S. Y. Cho, and T. S. Min, J. Korean Soc. Food Sci. Nutr., 35, 231 (2006). https://doi.org/10.3746/jkfn.2006.35.2.231