DOI QR코드

DOI QR Code

Hepatic Cavernous Hemangiomas: Relationship between Speed of Intratumoral Enhancement during Dynamic MRI and Apparent Diffusion Coefficient on Diffusion-Weighted Imaging

  • Nam, Se Jin (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Park, Kae Young (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Yu, Jeong-Sik (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Chung, Jae-Joon (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Kim, Joo Hee (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Kim, Ki Whang (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital)
  • Published : 2012.12.01

Abstract

Objective: To investigate the relationships between the apparent diffusion coefficients (ADCs) on diffusion-weighted imaging (DWI) and the speed of contrast-enhancement in hepatic hemangiomas. Materials and Methods: Sixty-nine hepatic hemangiomas (${\geq}$ 1 cm) were evaluated with DWI, by using multiple b values (b = 50, 400, $800s/mm^{2}$), followed by a gadolinium-enhanced dynamic MRI. The lesions were classified into three groups, according to the speed of contrast-enhancement on the portal phase. ADCs were measured on the ADC map automatically, and were calculated by using the two different b values ($mADC_{50-400}$ with b values = 50 and 400; $mADC_{400-800}$ with b values = 400 and $800s/mm^{2}$). Results: The mean ADCs (${\times}$ $10^{-3}mm^{2}/s$) were significantly higher in the rapid group (1.9 ${\pm}$ 0.44) than in the intermediate (1.7 ${\pm}$ 0.35, p = 0.046) or the slow groups (1.4 ${\pm}$ 0.34, p = 0.002). There were significant differences between the rapid and the slow groups in $mADC_{50-400}$ (2.12 vs. 1.48; p = 0.008) and $mADC_{400-800}$ (1.68 vs. 1.22, p = 0.010), and between the rapid and the intermediate groups in $mADC_{50-400}$ (2.12 vs. 1.79, p = 0.049). Comparing $mADC_{50-400}$ with $mADC_{400-800}$, there was a significant difference only in the rapid group (p = 0.001). Conclusion: Higher ADCs of rapidly-enhancing hemangiomas may be related to richer intralesional vascular perfusion. Also, the restricted diffusion may be attributed to the difference of structural characteristics of hemangioma.

Keywords

References

  1. Jeong MG, Yu JS, Kim KW. Hepatic cavernous hemangioma: temporal peritumoral enhancement during multiphase dynamic MR imaging. Radiology 2000;216:692-697 https://doi.org/10.1148/radiology.216.3.r00se08692
  2. Vilgrain V, Boulos L, Vullierme MP, Denys A, Terris B, Menu Y. Imaging of atypical hemangiomas of the liver with pathologic correlation. Radiographics 2000;20:379-397 https://doi.org/10.1148/radiographics.20.2.g00mc01379
  3. Ichikawa T, Haradome H, Hachiya J, Nitatori T, Araki T. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR Am J Roentgenol 1998;170:397-402 https://doi.org/10.2214/ajr.170.2.9456953
  4. Muller MF, Prasad P, Siewert B, Nissenbaum MA, Raptopoulos V, Edelman RR. Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology 1994;190:475-478 https://doi.org/10.1148/radiology.190.2.8284402
  5. Namimoto T, Yamashita Y, Sumi S, Tang Y, Takahashi M. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology 1997;204:739-744 https://doi.org/10.1148/radiology.204.3.9280252
  6. Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 1999;173:393-398 https://doi.org/10.2214/ajr.173.2.10430143
  7. Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003;226:71-78 https://doi.org/10.1148/radiol.2261011904
  8. Bruegel M, Holzapfel K, Gaa J, Woertler K, Waldt S, Kiefer B, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 2008;18:477-485 https://doi.org/10.1007/s00330-007-0785-9
  9. Gourtsoyianni S, Papanikolaou N, Yarmenitis S, Maris T, Karantanas A, Gourtsoyiannis N. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol 2008;18:486-492 https://doi.org/10.1007/s00330-007-0798-4
  10. Goshima S, Kanematsu M, Kondo H, Yokoyama R, Kajita K, Tsuge Y, et al. Hepatic hemangioma: correlation of enhancement types with diffusion-weighted MR findings and apparent diffusion coefficients. Eur J Radiol 2009;70:325-330 https://doi.org/10.1016/j.ejrad.2008.01.035
  11. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999;210:617-623 https://doi.org/10.1148/radiology.210.3.r99fe17617
  12. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505 https://doi.org/10.1148/radiology.168.2.3393671
  13. Le Bihan D. Diffusion/perfusion MR imaging of the brain: from structure to function. Radiology 1990;177:328-329 https://doi.org/10.1148/radiology.177.2.2217762
  14. Moteki T, Horikoshi H, Oya N, Aoki J, Endo K. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted reordered turboFLASH magnetic resonance images. J Magn Reson Imaging 2002;15:564-572 https://doi.org/10.1002/jmri.10101
  15. Yamashita Y, Ogata I, Urata J, Takahashi M. Cavernous hemangioma of the liver: pathologic correlation with dynamic CT findings. Radiology 1997;203:121-125 https://doi.org/10.1148/radiology.203.1.9122378
  16. Obata S, Matsunaga N, Hayashi K, Ohtsubo M, Morikawa T, Takahara O. Fluid-fluid levels in giant cavernous hemangioma of the liver: CT and MRI demonstration. Abdom Imaging 1998;23:600-602 https://doi.org/10.1007/s002619900411
  17. Ghai S, Dill-Macky M, Wilson S, Haider M. Fluid-fluid levels in cavernous hemangiomas of the liver: baffled? AJR Am J Roentgenol 2005;184(3 Suppl):S82-S85 https://doi.org/10.2214/ajr.184.3_supplement.01840s82
  18. Lee J, Lim HK, Jeon YH. Multiple hepatic hemangiomas with fluid-fluid levels. Australas Radiol 2007;51 Suppl:B310-B312 https://doi.org/10.1111/j.1440-1673.2007.01801.x
  19. Soyer P, Bluemke DA, Fishman EK, Rymer R. Fluid-fluid levels within focal hepatic lesions: imaging appearance and etiology. Abdom Imaging 1998;23:161-165 https://doi.org/10.1007/s002619900312
  20. Yu JS, Kim MJ, Kim KW. Intratumoral blood flow in cavernous hemangioma of the liver: radiologic-pathologic correlation. Radiology 1998;208:549-550
  21. Kwee TC, Takahara T, Koh DM, Nievelstein RA, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 2008;28:1141-1148 https://doi.org/10.1002/jmri.21569
  22. Nasu K, Kuroki Y, Fujii H, Minami M. Hepatic pseudo-anisotropy: a specific artifact in hepatic diffusion-weighted images obtained with respiratory triggering. MAGMA 2007;20:205-211 https://doi.org/10.1007/s10334-007-0084-0

Cited by

  1. RE: Evaluation of Hepatic Hemangiomas with Diffusion Weighted Imaging vol.14, pp.3, 2012, https://doi.org/10.3348/kjr.2013.14.3.545
  2. Detection and characterization focal hepatic lesions with diffusion-weighted MR imaging vol.38, pp.5, 2012, https://doi.org/10.1007/s00261-013-0026-4
  3. The role of magnetic resonance diffusion-weighted imaging and three-dimensional arterial spin labelling perfusion imaging in the differentiation of parasellar meningioma and cavernous haemangioma vol.42, pp.4, 2012, https://doi.org/10.1177/0300060514531918
  4. Correlation of the Speed of Enhancement of Hepatic Hemangiomas with Intravoxel Incoherent Motion MR Imaging vol.18, pp.3, 2014, https://doi.org/10.13104/jksmrm.2014.18.3.208
  5. Differentiation of hepatocellular carcinoma from its various mimickers in liver magnetic resonance imaging: What are the tips when using hepatocyte-specific agents? vol.22, pp.1, 2012, https://doi.org/10.3748/wjg.v22.i1.284