References
- I.K. Argyros, D. Chen, Q. Qian, The Jarratt method in Banach space setting, J. Comput. Appl. Math. 51 (1994), 103-106. https://doi.org/10.1016/0377-0427(94)90093-0
- C. Chun, Y. Ham, A one-parameter fourth-order family of iterative methods for nonlinear equations, Applied Mathematics and Computation 189 (2007), Issue 1, 610-614. https://doi.org/10.1016/j.amc.2006.11.113
- C. Chun, Y. Ham, Some fourth-order modifications of Newton's method, Applied Mathematics and Computation, 197 (2008), 654-658. https://doi.org/10.1016/j.amc.2007.08.003
- P. Jarratt, Some fourth-order multipoint iterative methods for solving equations, Math. Comput. 20 (1966), no. 95, 434-437. https://doi.org/10.1090/S0025-5718-66-99924-8
- R. King, A family of fourth-order methods for nonlinear equations, SIAM J. Numer. Anal. 10 (1973), no. 5, 876-879. https://doi.org/10.1137/0710072
- J. Kou, Y. Li and X. Wang, Fourth-order iterative methods free from second derivative, Applied Mathematics and Computation 184 (2007), Issue 2, 880-885. https://doi.org/10.1016/j.amc.2006.05.189
- J. Kou, Y. Li and X. Wang, A composite fourth-order iterative method for solving non-linear equations, Int. J. Comput. Math. 184 (2007), 471-475.
- M. Noor, F. Ahmad, Fourth-order convergent iterative method for non-linear equation, Applied Mathematics and Computation 182 (2006), Issue 2, 1149- 1153. https://doi.org/10.1016/j.amc.2006.04.068
- J. F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, 1982.
- S.Wolfram, The Mathematica Book, 4th ed., Cambridge University Press, 1999.