References
-
J. Ahn and Y. S. Shin. The Minirnal Free Resolution of A fat Star-Configuration in
$\mathbb{P}^n$ , Algebra Colloquium, to appear. - A. V. Geramita, T. Harima, J.C. Migliore, Y. S. Shin, The Hilbert function of a level algebra. Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
- A. V. Geramita, T. Harima and Y.S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119. https://doi.org/10.1006/aima.1998.1889
-
A. V. Geramita, T. Harima and Y.S. Shin, Some Special Configurations of Points in
$\mathbb{P}^n$ , J. Algebra 268 (2003), no. 2, 484-518. https://doi.org/10.1016/S0021-8693(03)00118-2 - T. Harima, Characterization of Hilbert functions of Gorenstein Artin Algebras with the Weak Stanley properth Proc. Amer. Math. Soc. 123 (1995), 3631-3638. https://doi.org/10.1090/S0002-9939-1995-1307527-7
- J. C. Migliore and F.Zanello, The Strength of Weak-Lefdchetz Property, Illinois J. Math. 52 (2008), no. 41, 1417-1433.
- Y. S. Shim, Secants to The Variety of Completely Reducible Forms and The Union of Star-Configurations, Journal of Algebra and its Application, To appear.
-
Y. S. Shim, Star-Configurations in
$\mathbb{P}^2$ Having Generic Hilbert Functions and The Weak-Lefschetz Property, Comm. in Algebra 40 (2012), no. 6, 2226-2242. https://doi.org/10.1080/00927872.2012.656783
Cited by
- SOME APPLICATION OF THE UNION OF TWO 𝕜-CONFIGURATIONS IN ℙ2 vol.27, pp.3, 2014, https://doi.org/10.14403/jcms.2014.27.3.413
- SOME EXAMPLES OF THE UNION OF TWO LINEAR STAR-CONFIGURATIONS IN ℙ2HAVING GENERIC HILBERT FUNCTION vol.26, pp.2, 2013, https://doi.org/10.14403/jcms.2013.26.2.403