참고문헌
- B. M. Ahn, Extracting linear factors in Feynman's operational calculi: the case of time dependent noncommuting operators, Bull. Korean Math. Soc. 41 (2004), 573-587. https://doi.org/10.4134/BKMS.2004.41.3.573
- B. M. Ahn and C. H. Lee, A convergence theorem for Feynman's operational calculi: the case of time dependent noncommuting operators, Commun. Korean Math. Soc. 19 (2004), 721-730. https://doi.org/10.4134/CKMS.2004.19.4.721
- B. M. Ahn and I. Yoo, Blending instantaneous and continuous phenomena in Feynman's operational calculi: the case of time dependent noncommuting opera- tors, Commun. Korean Math. Soc. 23 (2008), 67-80. https://doi.org/10.4134/CKMS.2008.23.1.067
- P. Billingsley, Convergence of Probability Measures, Wiley New York, 1968.
- R. Feynman, An operator calculus having application in quantum electrodynamics, Phys. Rev. 84 (1951), 108-128. https://doi.org/10.1103/PhysRev.84.108
- B. Jefferies and G. W. Johnson , Feynman's operational calculi for noncommut- ing operators: Definitions and elementary properties, Russian J. Math. Phys. 8 (2001), 153-178.
- B. Jefferies and G. W. Johnson, Feynman's operational calculi for noncommuting operators: Tensors, ordered supports and disentangling an exponential factor, Math. Notes 70 (2001), 744-764. https://doi.org/10.1023/A:1012903732597
- B. Jefferies and G. W. Johnson, Feynman's operational calculi for noncommuting operators: Spectral theory, Infinite Dimensional Anal. Quantum Probab 5 (2002), 171-199. https://doi.org/10.1142/S021902570200078X
- B. Jefferies and G. W. Johnson, Feynman's operational calculi for noncommuting operators: The monogenic calculus, Adv. Appl. Clifford Algebra 11 (2002), 233-265.
- B. Jefferies, G. W. Johnson and L. Nielsen, Feynman's operational calculi for time dependent noncommuting operators,J. Korean Math. Soc. 38 (2001), 193-226.
- G. W. Johnson and M. L. Lapidus, The Feynman integral and Feynman opera- tional calculus, Oxford U. Press Oxford 2000.
- L. Nielsen, Stability Properties for Feynman's operational calculus in the ombined Continuous/Discrete Setting, Acta Appl. Math. 88 (2005), 47-79. https://doi.org/10.1007/s10440-005-6699-0
- L. Nielsen , Weak convergence and vector-valued function: Improving the stability theory of Feynman's operational calculi, Math. Phys. Anal. Geom. 10 (2007), 271-295. https://doi.org/10.1007/s11040-007-9033-4
- V. E. Nazaikinskii, V.E.Shatalov and B.Yu.Sternin, Methods of Noncommutative Analysis, Stud. in Math. 22, Walter de Gruyter Berlin 1996.