References
- E. L. Allgower, K. Bohmer, F. A. Potra, W.C. Rheinboldt, A mesh independence principle for operator equations and their discretizations, SIAM J. Numer. Anal. 23 (1986), 160-169. https://doi.org/10.1137/0723011
- S. Amat, S. Busquier, Convergence and numerical analysis of a family of two-step Steffensen's method, Comput. Math. Appl. 49 (2005), 13-22. https://doi.org/10.1016/j.camwa.2005.01.002
- I. K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004), 315-332. https://doi.org/10.1016/j.cam.2004.01.029
- I. K. Argyros, On the secant method for solving nonsmooth equations, J. Math. Anal. Appl. 322 (2006), 146-157. https://doi.org/10.1016/j.jmaa.2005.09.006
- I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two{point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), 374-397. https://doi.org/10.1016/j.jmaa.2004.04.008
- I. K. Argyros, Computational Theory of Iterative Methods, Studies in Computa- tional Mathematics, 15, Elsevier, 2007, New York, U.S.A.
- P. N. Brown, A local convergence theory for combined inexact-Newton/finite dif- ference projection methods, SIAM J. Numer. Anal. 24 (1987), 407-434. https://doi.org/10.1137/0724031
- S. Chandrasekhar, Radiative Transfer, Dover Publ. New York, 1960.
- J. M. Gutierrez, M. A. Hernanadez, M. A. Salanova, Accessibility of solutions by Newton's method, Inter. J. Comput. Math. 57 (1995), 239-241. https://doi.org/10.1080/00207169508804427
- L. V. Kantorovich, G. P. Akilov, Functional Analysis in Normed Spaces, Perga- mon Press, Oxford, 1982.
- W. C. Rheinboldt, An adaptive continuation process for solving systems of non- linear equations, Banach Center Publ. 3 (1975), 129-142.
- X. H. Wang, Convergence on the iteration of Halley family in weak conditions, Chinese Science Bulletin 42 (1997), 552-556. https://doi.org/10.1007/BF03182614
- D. Wang, F. Zhao, The theory of Smale's point estimation and its applications, J. Comput. Appl. Math. 60 (1995), 253-269. https://doi.org/10.1016/0377-0427(94)00095-I
- T. J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (1984), 583-590. https://doi.org/10.1137/0721040