DOI QR코드

DOI QR Code

ANALOGUE OF WIENER INTEGRAL IN THE SPACE OF SEQUENCES OF REAL NUMBERS

  • Ryu, Kun Sik (Department of Mathematics Education Hannam University)
  • 발행 : 2012.02.15

초록

Let T > 0 be given. Let $(C[0,T],m_{\varphi})$ be the analogue of Wiener measure space, associated with the Borel proba-bility measure ${\varphi}$ on ${\mathbb{R}}$, let $(L_{2}[0,T],\tilde{\omega})$ be the centered Gaussian measure space with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and ${\el}_2,\;\tilde{m}$ be the abstract Wiener measure space. Let U be the space of all sequence $<c_{n}>$ in ${\el}_{2}$ such that the limit $lim_{{m}{\rightarrow}\infty}\;\frac{1}{m+1}\;\sum{^{m}}{_{n=0}}\;\sum_{k=0}^{n}\;c_{k}\;cos\;\frac{k{\pi}t}{T}$ converges uniformly on [0,T] and give a set function m such that for any Borel subset G of $\el_2$, $m(\mathcal{U}\cap\;P_{0}^{-1}\;o\;P_{0}(G))\;=\tilde{m}(P_{0}^{-1}\;o\;P_{0}(G))$. The goal of this note is to study the relationship among the measures $m_{\varphi},\;\tilde{\omega},\;\tilde{m}$ and $m$.

키워드

참고문헌

  1. R. E. Edwards, Fourier Series, 2nd ed., Springer-Verlag, 1979.
  2. A. de Andrsde and P. R. C. Ruffino, Wiener integral in the space of sequences of real numbers, Archivum Mathematicum 36 (2000), 95-101.
  3. L. Gross, Abstract Wiener measure, Lecture note in math., Springer-Verlag, 1970.
  4. H. H. Kuo Gaussian Measures in Banach Spaces, Lecture note in math., Springer-Verlag, 1975.
  5. P. R. C. Ruffno, A Fourier Analysis of white noise via cannonical Wiener space, Proceeding of the 4th Protuguese Conference on Automatic Control (2000), 144-148.
  6. K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), 4921-4951. https://doi.org/10.1090/S0002-9947-02-03077-5
  7. P. Zhidkov, On the equivalence of the centered Gaussian measure in $L_{2}$ with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and the conditional Wiener measure, Rendiconti del Circolo Mathematico di Palermo 58 (2009), 427-440. https://doi.org/10.1007/s12215-009-0033-z

피인용 문헌

  1. Integrability on the Abstract Wiener Space of Double Sequences and Fernique Theorem vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/1667865
  2. The Hilbert Space of Double Fourier Coefficients for an Abstract Wiener Space vol.9, pp.4, 2012, https://doi.org/10.3390/math9040389