DOI QR코드

DOI QR Code

A FIXED POINT APPROACH TO THE STABILITY OF APPROXIMATELY QUADRATIC-ADDITIVE MAPPINGS

  • Lee, Chang-Ju (Department of Mathematics Education Gongju National University of Education) ;
  • Lee, Yang-Hi (Department of Mathematics Education Gongju National University of Education)
  • Published : 2012.02.15

Abstract

In this paper, we investigate the stability of a functional equation $$f(x+y+z)-f(x+y)-f(y+z)-f(x+z)+f(x)+f(y)+f(z)=0$$ by using the fixed point theory in the sense of L. $C\breve{a}dariu$ and V. Radu.

Keywords

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4(1) (2003), Art. 4.
  3. L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), 25-48.
  4. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach in Iteration Theory, Grazer Mathematische Berichte, Karl-Franzens-Universitaet, Graz, Graz, Austria 346 (2004), 43-52.
  5. P. Gavruta, A generalization of the Hyers{Ulam{Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  6. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  7. S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137. https://doi.org/10.1006/jmaa.1998.5916
  8. H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358-372. https://doi.org/10.1016/j.jmaa.2005.11.053
  9. Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), 397-403. https://doi.org/10.4134/BKMS.2008.45.2.397
  10. Y. H. Lee and K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), 1361-1369. https://doi.org/10.1090/S0002-9939-99-05156-4
  11. B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  12. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  13. I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj- Napoca 1979 (in Romanian).
  14. S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1968, p. 63.