References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4(1) (2003), Art. 4.
- L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), 25-48.
- L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach in Iteration Theory, Grazer Mathematische Berichte, Karl-Franzens-Universitaet, Graz, Graz, Austria 346 (2004), 43-52.
- P. Gavruta, A generalization of the Hyers{Ulam{Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137. https://doi.org/10.1006/jmaa.1998.5916
- H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358-372. https://doi.org/10.1016/j.jmaa.2005.11.053
- Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), 397-403. https://doi.org/10.4134/BKMS.2008.45.2.397
- Y. H. Lee and K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), 1361-1369. https://doi.org/10.1090/S0002-9939-99-05156-4
- B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj- Napoca 1979 (in Romanian).
- S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1968, p. 63.