DOI QR코드

DOI QR Code

Effect of GeO2 on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae)

  • Tarakhovskaya, Elena R. (Department of Plant Physiology and Biochemistry, St. Petersburg State University) ;
  • Kang, Eun-Ju (Department of Oceanography, Chonnam National University) ;
  • Kim, Kwang-Young (Department of Oceanography, Chonnam National University) ;
  • Garbary, David J. (Department of Biology, St. Francis Xavier University)
  • Received : 2011.12.21
  • Accepted : 2012.05.16
  • Published : 2012.06.15

Abstract

Germanium dioxide ($GeO_2$) has been used for many years in the cultivation of red and green algae as a means of controlling the growth of diatoms. Brown algae are sensitive to $GeO_2$, however, the basis of this sensitivity has not been characterized. Here we use embryos of $Fucus$ $vesiculosus$ to investigate morphological and physiological impacts of $GeO_2$ toxicity. Morphometric features of embryos were measured microscopically, and physiological features were determined using pulse amplitude modulated (PAM) fluorometry. At 5 mg $L^{-1}$ $GeO_2$, embryos grew slower than controls and developed growth abnormalities. After 24 h, initial zygote divisions were often oblique rather than transverse. Rhizoids had inflated tips in $GeO_2$ and were less branched, and apical hairs were deformed, with irregularly aligned, spheroidal cells. Minimum fluorescence ($F_0$) showed minor differences over the 10 days experiment, and pigment levels (chlorophylls $a$, $c$ and total carotenoids) showed no difference after 10 days. Optimum quantum yield increased from ca. 0.52 at 24 h to 0.67 at 5 days, and $GeO_2$-treated embryos had higher mean values (significant at 3 and 5 days). Optimum quantum yield of photosystem II (${\Phi}_{PSII}$) was stable in control thalli after 5 days, but declined significantly in $GeO_2$. Addition of silica (as $SiO_2$) did not reverse the effects of $GeO_2$. These results suggest that $GeO_2$ toxicity in brown algae is associated with negative impacts at the cytological level rather than metabolic impacts associated with photosynthesis.

Keywords

References

  1. Bassil, E., Hu, H. N. & Brown, P. H. 2004. Use of phenylboronic acids to investigate boron function in plants: possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiol. 136:3383-3395. https://doi.org/10.1104/pp.104.040527
  2. Belanger, K. D. & Quatrano, R. S. 2000. Membrane recycling occurs during asymmetric tip growth and cell plate formation in Fucus distichus zygotes. Protoplasma 212:24-37. https://doi.org/10.1007/BF01279344
  3. Bisgrove, S. R., Henderson, D. C. & Kropf, D. L. 2003. Asymmetric division in fucoid zygotes is positioned by telophase nuclei. Plant Cell 15:854-862. https://doi.org/10.1105/tpc.009415
  4. Bisgrove, S. R. & Kropf, D. L. 2001a. Asymmetric cell division in fucoid algae: a role for cortical adhesions in alignment of the mitotic apparatus. J. Cell Sci. 114:4319-4328.
  5. Bisgrove, S. R. & Kropf, D. L. 2001b. Cell wall deposition during morphogenesis in fucoid algae. Planta 212:648-658. https://doi.org/10.1007/s004250000434
  6. Bisgrove, S. R. & Kropf, D. L. 2004. Cytokinesis in brown algae: studies of asymmetric division in fucoid zygotes. Protoplasma 223:163-173.
  7. Bolte, S., Talbot, C., Boutte, Y., Catrice, O., Read, N. D. & Satiat-Jeunemaitre, B. 2004. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J. Microsc. 214:159-173. https://doi.org/10.1111/j.0022-2720.2004.01348.x
  8. Cakmak, I., Kurz, H. & Marschner, H. 1995. Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiol. Plant. 95:11-18. https://doi.org/10.1111/j.1399-3054.1995.tb00801.x
  9. Cheng, C. & McComb, J. A. 1992. In vitro germination of wheat pollen on raffinose medium. New Phytol. 120:459-462. https://doi.org/10.1111/j.1469-8137.1992.tb01793.x
  10. Chiappino, M. L., Azam, F. & Volcani, B. E. 1977. Effect of germanic acid on developing cell walls of diatoms. Protoplasma 93:191-204. https://doi.org/10.1007/BF01275653
  11. Chuda, Y., Ohnishi-Kameyama, M. & Nagata, T. 1997. Identification of the forms of boron in seaweed by 11B-NMR. Phytochemistry 46:209-213. https://doi.org/10.1016/S0031-9422(97)00284-7
  12. Dembitsky, V. M., Smoum, R., Al-Quntar, A. A., Abu Ali, H., Pergament, I. & Srebnik, M. 2002. Natural occurrence of boron-containing compounds in plants, algae and microorganisms. Plant Sci. 163:931-942. https://doi.org/10.1016/S0168-9452(02)00174-7
  13. Galway, M. E. 2006. Root hair cell walls: filling in the framework. Can. J. Bot. 84:613-621. https://doi.org/10.1139/b06-006
  14. Garbary, D. J. & Kim, K. Y. 2005. Anatomical differentiation and photosynthetic adaptation in brown algae. Algae 20:233-238. https://doi.org/10.4490/ALGAE.2005.20.3.233
  15. Garbary, D. J., Kim, K. Y. & Hoffman, J. 2004. Cytological damage to the red alga Griffithsia pacifica from ultraviolet radiation. Hydrobiologia 512:165-170. https://doi.org/10.1023/B:HYDR.0000020323.78605.9e
  16. Garbary, D. & Tam, C. 1989. Blidingia minima var. stolonifera var. nov. (Ulvales, Chlorophyta) from British Columbia: systematics, life history and morphogenesis. Nord. J. Bot. 9:321-328. https://doi.org/10.1111/j.1756-1051.1989.tb01006.x
  17. Genty, B., Briantais, J. -M. & Baker, N. R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  18. Hadley, R., Hable, W. E. & Kropf, D. L. 2006. Polarization of the endomembrane system is an early event in fucoid zygote development. BMC Plant Biol. 6:5. https://doi.org/10.1186/1471-2229-6-5
  19. Harrison, W. G. & Platt, T. 1986. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biol. 5:153-164. https://doi.org/10.1007/BF00441695
  20. Henley, W. J. & Dunton, K. H. 1995. A seasonal comparison of carbon, nitrogen and pigment content in Laminaria solidungula and L. saccharina (Phaeophyta) in the Alaskan Arctic. J. Phycol. 31:325-331. https://doi.org/10.1111/j.0022-3646.1995.00325.x
  21. Holdaway-Clarke, T. L. & Hepler, P. K. 2003. Control of pollen tube growth: role of ion gradients and fluxes. New Phytol. 159:539-563. https://doi.org/10.1046/j.1469-8137.2003.00847.x
  22. Homble, F. & Leonetti, M. 2007. Emergence of symmetry breaking in fucoid zygotes. Trends Plant Sci. 12:253-259. https://doi.org/10.1016/j.tplants.2007.04.007
  23. Hubbard, C. B., Garbary, D. J., Kim, K. Y. & Chiasson, D. M. 2004. Host specificity and growth of kelp gametophytes symbiotic with filamentous red algae (Ceramiales, Rhodophyta). Helgol. Mar. Res. 58:18-25. https://doi.org/10.1007/s10152-003-0162-2
  24. Jaffe, L. F. & Neuscheler, W. 1969. On the mutual polarization of nearby pairs of fucaceous eggs. Dev. Biol. 19:549-565. https://doi.org/10.1016/0012-1606(69)90037-2
  25. Jeffrey, S. W. & Humphrey, G. F. 1975. New spectrophotometric equations for determining chlorophylls "a", "b", "$c_1$" and "$c_2$" in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167:191-194. https://doi.org/10.1016/S0015-3796(17)30778-3
  26. Kim, K. Y. & Garbary, D. J. 2009. Form, function and longevity in fucoid thalli: chlorophyll a fluorescence differentiation of Ascophyllum nodosum, Fucus vesiculosus and F. distichus (Phaeophyceae). Algae 24:93-104. https://doi.org/10.4490/ALGAE.2009.24.2.093
  27. Kim, K. Y., Jeong, H. J., Main, H. P. & Garbary, D. J. 2006. Fluorescence and photosynthetic competency in single eggs and embryos of Ascophyllum nodosum (Phaeophyceae). Phycologia 45:331-336. https://doi.org/10.2216/05-40.1
  28. Kropf, D. L. 1997. Induction of polarity in fucoid zygotes. Plant Cell 9:1011-1020. https://doi.org/10.1105/tpc.9.7.1011
  29. Lamote, M., Darko, E., Schoefs, B. & Lemoine, Y. 2003. Assembly of the photosynthetic apparatus in embryos from Fucus serratus L. Photosynth. Res. 77:45-52. https://doi.org/10.1023/A:1024999024157
  30. Lewin, J. 1966. Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth. Phycologia 6:1-12. https://doi.org/10.2216/i0031-8884-6-1-1.1
  31. Major, K. M. & Davison, I. R. 1998. Influence of temperature and light on growth and photosynthetic physiology of Fucus evanescens (Phaeophyta) embryos. Eur. J. Phycol. 33:129-138. https://doi.org/10.1080/09670269810001736623
  32. Markham, J. W. & Hagmeier, E. 1982. Observations on the effects of germanium dioxide on the growth of macro-algae and diatoms. Phycologia 21:125-130. https://doi.org/10.2216/i0031-8884-21-2-125.1
  33. McIlrath, W. J. & Skok, J. 1966. Substitution of germanium for boron in plant growth. Plant Physiol. 41:1209-1212. https://doi.org/10.1104/pp.41.7.1209
  34. McLachlan, J. 1973. Growth media: marine. In Stein, J. R. (Ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, pp. 25-51.
  35. McLachlan, J. 1977. Effects of nutrients on growth and development of embryos of Fucus edentatus Pyl. (Phaeophyceae, Fucales). Phycologia 16:329-338. https://doi.org/10.2216/i0031-8884-16-3-329.1
  36. McLachlan, J. & Bidwell, R. G. S. 1978. Photosynthesis of eggs, sperm, zygotes, and embryos of Fucus serratus. Can. J. Bot. 56:371-373. https://doi.org/10.1139/b78-045
  37. McLachlan, J., Chen, L. C. -M. & Edelstein, T. 1971. The culture of four species of Fucus under laboratory conditions. Can. J. Bot. 49:1463-1469. https://doi.org/10.1139/b71-206
  38. Mizuta, H. & Yasui, H. 2011. Protective function of silicon deposition in Saccharina japonica sporophytes (Phaeophyceae). J. Appl. Phycol. Doi: 10.1007/s10811-9750-8.
  39. Parker, B. C. 1969. Occurrence of silica in brown and green algae. Can. J. Bot. 47:537-540. https://doi.org/10.1139/b69-073
  40. Platt, T., Gallegos, C. L. & Harrison, W. G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38:687-701.
  41. Quatrano, R. S. 1974. Developmental biology: development in marine organisms. In Mariscal, R. N. (Ed.) Experimental Marine Biology. Academic Press, New York, pp. 303-346.
  42. Rohacek, K. 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13-29. https://doi.org/10.1023/A:1020125719386
  43. Schoenwaelder, M. E. A. 2002. The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125-139. https://doi.org/10.2216/i0031-8884-41-2-125.1
  44. Schoenwaelder, M. E. A. 2008. The biology of phenolic containing vesicles. Algae 23:163-175. https://doi.org/10.4490/ALGAE.2008.23.3.163
  45. Schoenwaelder, M. E. A. & Wiencke, C. 2000. Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biol. 2:24-33. https://doi.org/10.1055/s-2000-9178
  46. Scrosati, R., Garbary, D. J. & McLachlan, J. 1994. Reproductive ecology of Chondrus crispus (Rhodophyta, Gigartinales) from Nova Scotia, Canada. Bot. Mar. 37:293-300.
  47. Shea, R. & Chopin, T. 2007. Effects of germanium dioxide, an inhibitor of diatom growth, on the microscopic laboratory stage of the kelp, Laminaria saccharina. J. Appl. Phycol. 19:27-32. https://doi.org/10.1007/s10811-006-9107-x
  48. Skok, J. 1957. The substitution of complexing substances for boron in plant growth. Plant Physiol. 32:308-312. https://doi.org/10.1104/pp.32.4.308
  49. Tarakhovskaya, E. R. & Maslov, Y. I. 2005. Description of the photosynthetic apparatus of Fucus vesiculosus L. in early embryogenesis. Biol. Bull. 32:456-460 (in Russian). https://doi.org/10.1007/s10525-005-0124-0
  50. Tatewaki, M. & Mizuno, M. 1979. Growth inhibition by germanium dioxide in various algae, especially in brown algae. Jpn. J. Phycol. 27:205-212.
  51. Yang, W. X. 1993. Morphological study on the inhibitory effect of germanium dioxide on growth and development of brown algae. Sci. Pap. Inst. Algol. Res. Fac. Sci. Hokkaido Univ. 9:33-64.

Cited by

  1. Physiological ecology of photosynthesis inPrasiola stipitata(Trebouxiophyceae) from the Bay of Fundy, Canada vol.61, pp.3, 2013, https://doi.org/10.1111/pre.12017
  2. Optimising the settlement and hatchery culture of Saccharina latissima (Phaeophyta) by manipulation of growth medium and substrate surface condition vol.28, pp.2, 2016, https://doi.org/10.1007/s10811-015-0621-6
  3. A model for the effects of germanium on silica biomineralization in choanoflagellates vol.13, pp.122, 2016, https://doi.org/10.1098/rsif.2016.0485
  4. Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light vol.56, pp.4, 2018, https://doi.org/10.1007/s11099-018-0807-7
  5. Competition between Silicifiers and Non-silicifiers in the Past and Present Ocean and Its Evolutionary Impacts vol.5, pp.2296-7745, 2018, https://doi.org/10.3389/fmars.2018.00022