DOI QR코드

DOI QR Code

Susceptibility of Nereocystis luetkeana (Laminariales, Ochrophyta) and Eualaria fistulosa (Laminariales, Ochrophyta) spores to sedimentation

  • Deiman, Melissa (School of Fisheries and Ocean Sciences, University of Alaska Fairbanks) ;
  • Iken, Katrin (School of Fisheries and Ocean Sciences, University of Alaska Fairbanks) ;
  • Konar, Brenda (School of Fisheries and Ocean Sciences, University of Alaska Fairbanks)
  • 투고 : 2012.02.15
  • 심사 : 2012.05.02
  • 발행 : 2012.06.15

초록

The establishment of algal spores plays an essential role in adult kelp distribution and abundance patterns. Sedimentation is a key variable regulating algal spore settlement and success, possibly controlling species-specific dominance $in$ $situ$. Laboratory experiments were used to determine spore attachment and survival rates of two Alaskan canopy-forming kelps, $Nereocystis$ $luetkeana$ (K. Mertens) Postels & Ruprecht and $Eualaria$ $fistulosa$ (Postels & Ruprecht) M. J. Wynne, to various types of sediment loading. Spore attachment for both species was significantly and similarly affected by three sediment treatments: suspended particles; settled sediment covering the substratum; and smothering of attached spores by settling sediment. Spore attachment decreased by approximately 90% at 420 mg sediment $L^{-1}$, the highest sediment load tested here, under all three treatments for both species. These results suggest that increases in sedimentation may constrain the success of the spore stages, but sediment does not seem to be a likely factor explaining species-specific distribution patterns. However, while sedimentation affected spores of both species similarly, timing of spore release in relation to times of maximum sediment load in the water might differ for different species, possibly explaining kelp species distribution patterns.

키워드

참고문헌

  1. Airoldi, L. 2003. The effects of sedimentation on rocky coast assemblages. Oceanogr. Mar. Biol. 41:161-263.
  2. Amsler, C. D. & Neushul, M. 1989. Diel periodicity of spore release from the kelp Nereocystis luetkeana (Mertens) Postels et Ruprecht. J. Exp. Mar. Biol. Ecol. 134:117-127.
  3. Amsler, C. D. & Neushul, M. 1991. Photosynthetic physiology and chemical composition of spores of the kelps Macrocystis pyrifera, Nereocystis luetkeana, Laminaria farlowii, and Pterygophora californica (Phaeophyceae). J. Phycol. 27:26-34. https://doi.org/10.1111/j.0022-3646.1991.00026.x
  4. Amsler, C. D., Reed, D. C. & Neushul, M. 1992. The microclimate inhabited by macroalgal propagules. Br. Phycol. J. 27:253-270. https://doi.org/10.1080/00071619200650251
  5. Amsler, C. D., Shelton, K. L., Britton, C. J., Spencer, N. Y. & Greer, S. P. 1999. Nutrients do not influence swimming behavior or settlement rates of Ectocarpus siliculosus (Phaeophyceae) spores. J. Phycol. 35:239-244. https://doi.org/10.1046/j.1529-8817.1999.3520239.x
  6. Arakawa, H. 2005. Lethal effects caused by suspended particles and sediment load on zoospores and gametophytes of the brown alga Eisenia bicyclis. Fish. Sci. 71:133-140. https://doi.org/10.1111/j.1444-2906.2005.00940.x
  7. Arakawa, H. & Matsuike, K. 1992. Influence on seaweed-bed exerted by suspended matter. 2. Influence on insertion of zoospores, germination, survival, and maturation of gametophytes of brown algae exerted by sediments. Nippon Suisan Gakkaishi 58:619-625 (in Japanese). https://doi.org/10.2331/suisan.58.619
  8. Chenelot, H. 2003. Factors affecting estuarine populations of Nereocystis luetkeana in Kachemak Bay, Alaska. M.S. thesis, University of Alaska Fairbanks, Fairbanks, AK, USA, 178 pp.
  9. Dayton, P. K. 1985. Ecology of kelp communities. Annu. Rev. Ecol. Syst. 16:215-245. https://doi.org/10.1146/annurev.es.16.110185.001243
  10. Deiman, M. R. 2010. Kelp spore susceptibility to sedimentation and light within Alaska. M.S. thesis, University of Alaska Fairbanks, Fairbanks, AK, USA, 84 pp.
  11. Devinny, J. S. & Volse, L. A. 1978. Effects of sediments on the development of Macrocystis pyrifera gametophytes. Mar. Biol. 48:343-348. https://doi.org/10.1007/BF00391638
  12. Deysher, L. E. & Dean, T. A. 1986. In situ recruitment of sporophytes of the giant kelp, Macrocystis pyrifera (L.) C. A. Agardh: effects of physical factors. J. Exp. Mar. Biol. Ecol. 103:41-63. https://doi.org/10.1016/0022-0981(86)90131-0
  13. Dring, M. J., Makarov, V., Schoschina, E., Lorenz, M. & Luning, K. 1996. Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (Phaeophyta). Mar. Biol. 126:183-191. https://doi.org/10.1007/BF00347443
  14. Ebeling, A. W., Laur, D. R. & Rowley, R. J. 1985. Severe storm disturbances and reversal of community structure in a southern Californian kelp forest. Mar. Biol. 84:287-294. https://doi.org/10.1007/BF00392498
  15. Edwards, M. S. 2000. The role of alternate life-history stages of a marine macroalga: a seed bank analogue? Ecology 81:2404-2415. https://doi.org/10.1890/0012-9658(2000)081[2404:TROALH]2.0.CO;2
  16. Eriksson, B. K. & Johansson, G. 2005. Effects of sedimentation on macroalgae: species-specific responses are related to reproductive traits. Oecologia 143:438-448. https://doi.org/10.1007/s00442-004-1810-1
  17. Hubbard, C. B., Garbary, D. J., Kim, K. Y. & Chiasson, D. M. 2004. Host specificity and growth of kelp gametophytes symbiotic with filamentous red algae (Ceramiales, Rhodophyta). Helgol. Mar. Res. 58:18-25. https://doi.org/10.1007/s10152-003-0162-2
  18. Irving, A. D., Balata, D., Colosio, F., Ferrando, G. A. & Airoldi, L. 2009. Light, sediment, temperature, and the early life-history of the habitat-forming alga Cystoseira barbata. Mar. Biol. 156:1223-1231. https://doi.org/10.1007/s00227-009-1164-7
  19. Lees, D. C. 1976. The epifaunal assemblages in the Phillips Petroleum lease site off Spring Point, Chinitna Bay, Alaska. Prepared for Phillips Petroleum Company by Dames and Moore, Homer, AK, 32 pp.
  20. Luning, K. 1980. Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J. Phycol. 16:1-15. https://doi.org/10.1111/j.1529-8817.1980.tb02992.x
  21. National Estuarine Research Reserve System. 2011. Centralized Data Management Office. Baruch Marine Field Lab: University of South Carolina, National Oceanic and Atmospheric Administration, Office of Ocean and Coastal Resource Management. Available from: http://cdmo.baruch.sc.edu. Accessed Feb 15, 2011.
  22. Reed, D. 2000. Microecology of macroalgal blooms. J. Phycol. 36:1-2.
  23. Reed, D. C. 1990. The effects of variable settlement and early competition on patterns of kelp recruitment. Ecology 71:776-787. https://doi.org/10.2307/1940329
  24. Reed, D. C., Amsler, C. D. & Ebeling, A. W. 1992. Dispersal in kelps: factors affecting spore swimming and competency. Ecology 73:1577-1585. https://doi.org/10.2307/1940011
  25. Reed, D. C., Anderson, T. W., Ebeling, A. W. & Anghera, M. 1997. The role of reproductive synchrony in the coloniztion potential of kelp. Ecology 78:2443-2457. https://doi.org/10.1890/0012-9658(1997)078[2443:TRORSI]2.0.CO;2
  26. Santelices, B. 1990. Patterns of organizations of intertidal and shallow subtidal vegetation in wave exposed habitats of central Chile. Hydrobiologia 192:35-57. https://doi.org/10.1007/BF00006226
  27. Santelices, B., Aedo, D. & Hoffmann, A. 2002. Banks of microscopic forms and survival to darkness of proagules and microscopic stages of macroalgae. Rev. Chil. Hist. Nat. 75:547-555.
  28. Schiel, D. R. & Foster, M. S. 1986. The structure of subtidal algal stands in temperate waters. Oceanogr. Mar. Biol. 24:265-307.
  29. Schiel, D. R., Wood, S. A., Dunmore, R. A. & Taylor, D. I. 2006. Sediment on rocky intertidal reefs: effects on early post-settlement stages of habitat-forming seaweeds. J. Exp. Mar. Biol. Ecol. 331:158-172. https://doi.org/10.1016/j.jembe.2005.10.015
  30. Schoch, G. C. 2001. The spatial distribution of bull kelp (Nereocystis leutkeana) in Kachemak Bay Research Reserve. Alaska Department of Fish and Game, Homer, AK, 52 pp.
  31. Schoch, G. C. & Chenelot, H. 2004. The role of estuarine hydrodynamics in the distribution of kelp forests in Kachemak Bay, Alaska. J. Coast. Res. (Special Issue 45):179-194.
  32. Spurkland, T. & Iken, K. 2011. Kelp bed dynamics in estuarine environments in subarctic Alaska. J. Coast. Res. 27(Suppl):133-143.
  33. Svendsen, H., Beszczynska-Moller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Orbok, J. B., Bischof, K., Papucci, C., Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J. -G. & Dallmann, W. 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21:133-166. https://doi.org/10.1111/j.1751-8369.2002.tb00072.x
  34. Vadas, R. L., Johnson, S. & Norton, T. A. 1992. Recruitment and mortality of early post-settlement stages of benthic algae. Br. Phycol. J. 27:331-351. https://doi.org/10.1080/00071619200650291
  35. VanLooy, J., Forster, R. & Ford, A. 2006. Accelerating thinning of Kenai Peninsula glaciers, Alaska. Geophys. Res. Lett. 33:L21307. https://doi.org/10.1029/2006GL028060

피인용 문헌

  1. Sediment load and timing of sedimentation affect spore establishment in Macrocystis pyrifera and Undaria pinnatifida vol.161, pp.7, 2014, https://doi.org/10.1007/s00227-014-2442-6
  2. Management of Local Stressors Can Improve the Resilience of Marine Canopy Algae to Global Stressors vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0120837
  3. Lack of recovery from disturbance in high-arctic boulder communities vol.36, pp.8, 2013, https://doi.org/10.1007/s00300-013-1340-6
  4. Effects of abiotic stressors on kelp early life-history stages vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.8.7
  5. Influence of Static Habitat Attributes on Local and Regional Rocky Intertidal Community Structure vol.39, pp.6, 2016, https://doi.org/10.1007/s12237-016-0114-0
  6. Patterns of Saccharina latissima Recruitment vol.8, pp.12, 2013, https://doi.org/10.1371/journal.pone.0081092
  7. Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts vol.590, pp.1616-1599, 2018, https://doi.org/10.3354/meps12530
  8. Low recruitment, high tissue loss, and juvenile mortality limit recovery of kelp following large-scale defoliation vol.165, pp.10, 2018, https://doi.org/10.1007/s00227-018-3423-y
  9. in early life stages pp.13220829, 2018, https://doi.org/10.1111/pre.12347
  10. Wasted effort: recruitment and persistence of kelp on algal turf vol.600, pp.1616-1599, 2018, https://doi.org/10.3354/meps12677
  11. (phylum Ochrophyta) vol.55, pp.1, 2018, https://doi.org/10.1111/jpy.12814
  12. Supply and survival: glacial melt imposes limitations at the kelp microscopic life stage vol.60, pp.6, 2012, https://doi.org/10.1515/bot-2017-0039
  13. Supply and survival: glacial melt imposes limitations at the kelp microscopic life stage vol.60, pp.6, 2012, https://doi.org/10.1515/bot-2017-0039
  14. Morphological variation of a rapidly spreading native macroalga across a range of spatial scales and its tolerance to sedimentation vol.147, pp.None, 2012, https://doi.org/10.1016/j.marenvres.2019.02.017
  15. A review of protocols for the experimental release of kelp (Laminariales) zoospores vol.9, pp.14, 2019, https://doi.org/10.1002/ece3.5389
  16. Revisiting the ‘bank of microscopic forms’ in macroalgal‐dominated ecosystems vol.57, pp.1, 2012, https://doi.org/10.1111/jpy.13092
  17. Direct release of embryonic sporophytes from adult Nereocystis luetkeana (Laminariales, Ochrophyta) in a high latitude estuary vol.36, pp.2, 2021, https://doi.org/10.4490/algae.2021.36.5.10