DOI QR코드

DOI QR Code

A Practical Synthesis of Morita-Baylis-Hillman Adducts of Aryl Vinyl Ketones Catalyzed by a Proton Donor

  • Kim, Sung-Hwan (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Se-Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lim, Cheol-Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae-Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2012.03.15
  • Accepted : 2012.03.24
  • Published : 2012.06.20

Abstract

An efficient and practical synthesis of MBH adducts of aryl vinyl ketones was developed using DABCO and 4-nitrophenol as a proton donor. Addition of a proton donor and the use of excess amounts (3.0 equiv) of aldehydes were highly beneficial for the yields of MBH adducts of aryl vinyl ketones.

Keywords

References

  1. Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. https://doi.org/10.1021/cr010043d
  2. Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. https://doi.org/10.1021/cr900291g
  3. Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574. https://doi.org/10.1016/j.tet.2008.02.087
  4. Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1-48. https://doi.org/10.1021/cr068057c
  5. Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201-350.
  6. Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. https://doi.org/10.2174/1385272023374094
  7. Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. https://doi.org/10.5012/bkcs.2005.26.10.1481
  8. Radha Krishna, P.; Sachwani, R.; Reddy, P. S. Synlett 2008, 2897- 2912.
  9. Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769-8780. https://doi.org/10.1016/j.tet.2009.07.034
  10. Shi, M.; Wang, F.-J.; Zhao, M.-X.; Wei, Y. The Chemistry of the Morita-Baylis-Hillman Reaction; RSC Publishing: Cambridge, UK, 2011.
  11. Shi, M.; Li, C.-Q.; Jiang, J.-K. Helv. Chim. Acta 2002, 85, 1051-1057. https://doi.org/10.1002/1522-2675(200204)85:4<1051::AID-HLCA1051>3.0.CO;2-V
  12. Basavaiah, D.; Gowriswari, V. V. L.; Bharathi, T. K. Tetrahedron Lett. 1987, 28, 4591-4592. https://doi.org/10.1016/S0040-4039(00)96573-0
  13. Idahosa, K. C.; Molefe, D. M.; Pakade, V. E.; Brown, M. E.; Kaye, P. T. S. Afr. J. Chem. 2011, 64, 144-150.
  14. Trofimov, A.; Gevorgyan, V. Org. Lett. 2009, 11, 253-255. https://doi.org/10.1021/ol8026522
  15. Matsumoto, K.; Oshima, K.; Utimoto, K. Chem. Lett. 1994, 1211- 1214.
  16. Oh, K.; Li, J.-Y. Synthesis 2011, 1960-1967.
  17. Aranha, R. M.; Bowser, A. M.; Madalengoitia, J. S. Org. Lett. 2009, 11, 575-578. https://doi.org/10.1021/ol802577z
  18. Kim, K. H.; Lee, H. S.; Kim, Y. M.; Kim, J. N. Bull. Korean Chem. Soc. 2011, 32, 1087-1090. https://doi.org/10.5012/bkcs.2011.32.3.1087
  19. Maher, D. J.; Connon, S. J. Tetrahedron Lett. 2004, 45, 1301-1305. https://doi.org/10.1016/j.tetlet.2003.11.062
  20. Shi, M.; Liu, X.-G. Org. Lett. 2008, 10, 1043-1046. https://doi.org/10.1021/ol7028806
  21. Amarante, G. W.; Benassi, M.; Milagre, H. M. S.; Braga, A. A. C.; Maseras, F.; Eberlin, M. N.; Coelho, F. Chem. Eur. J. 2009, 15, 12460-12469. https://doi.org/10.1002/chem.200900966
  22. Aggarwal, V. K.; Emme, I.; Fulford, S. Y. J. Org. Chem. 2003, 68, 692-700. https://doi.org/10.1021/jo026671s
  23. Aggarwal, V. K.; Dean, D. K.; Mereu, A.; Williams, R. J. Org. Chem. 2002, 67, 510-514. https://doi.org/10.1021/jo016073y
  24. Yu, C.; Liu, B.; Hu, L. J. Org. Chem. 2001, 66, 5413-5418. https://doi.org/10.1021/jo015628m
  25. de Souza, R. O. M. A.; Pereira, V. L. P.; Esteves, P. M.; Vasconcellos, M. L. A. A. Tetrahedron Lett. 2008, 49, 5902-5905. https://doi.org/10.1016/j.tetlet.2008.07.140
  26. Gruttadauria, M.; Giacalone, F.; Meo, P. L.; Marculescu, A. M.; Riela, S.; Noto, R. Eur. J. Org. Chem. 2008, 1589-1596.
  27. Aggarwal, V. K.; Mereu, A.; Tarver, G. J.; McCague, R. J. Org. Chem. 1998, 63, 7183-7189. https://doi.org/10.1021/jo980421n
  28. Yang, K.-S.; Lee, W.-D.; Pan, J.-F.; Chen, K. J. Org. Chem. 2003, 68, 915-919. https://doi.org/10.1021/jo026318m
  29. Yukawa, T.; Seelig, B.; Xu, Y.; Morimoto, H.; Matsunaga, S.; Berkessel, A.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 11988- 11992. https://doi.org/10.1021/ja103294a
  30. Shi, M.; Liu, Y.-H. Org. Biomol. Chem. 2006, 1468-1470.
  31. Shi, M.; Chen, L.-H.; Li, C.-Q. J. Am. Chem. Soc. 2005, 127, 3790-3800. https://doi.org/10.1021/ja0447255
  32. Liu, Y.-H.; Shi, M. Adv. Synth. Catal. 2008, 350, 122-128. https://doi.org/10.1002/adsc.200700338
  33. Yamada, Y. M. A.; Ikegami, S. Tetrahedron Lett. 2000, 41, 2165-2169. https://doi.org/10.1016/S0040-4039(00)00125-8
  34. Zhong, W.; Zheng, Y.; Zhou, J.; Shen, Y. Synlett 2010, 3057-3060.
  35. Garnier, J.-M.; Anstiss, C.; Liu, F. Adv. Synth. Catal. 2009, 351, 331-338. https://doi.org/10.1002/adsc.200800679
  36. McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125, 12094-12095. https://doi.org/10.1021/ja037705w
  37. McDougal, N. T.; Trevellini, W. L.; Rodgen, S. A.; Kliman, L. T.; Schaus, S. E. Adv. Synth. Catal. 2004, 346, 1231-1240. https://doi.org/10.1002/adsc.200404122
  38. Narender, P.; Gangadasu, B.; Ravinder, M.; Srinivas, U.; Swamy, G. Y. S. K.; Ravikumar, K.; Rao, V. J. Tetrahedron 2006, 62, 954-959. https://doi.org/10.1016/j.tet.2005.10.032
  39. Grainger, R. S.; Leadbeater, N. E.; Pamies, A. M. Catal. Commun. 2002, 3, 449-452. https://doi.org/10.1016/S1566-7367(02)00178-4
  40. Abermil, N.; Masson, G.; Zhu, J. Org. Lett. 2009, 11, 4648-4651. https://doi.org/10.1021/ol901920s
  41. Abermil, N.; Masson, G.; Zhu, J. J. Am. Chem. Soc. 2008, 130, 12596- 12597. https://doi.org/10.1021/ja805122j
  42. Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. 2002, 4, 4723-4725. https://doi.org/10.1021/ol027197f
  43. Robiette, R.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. 2007, 129, 15513-15525 https://doi.org/10.1021/ja0717865
  44. Aggarwal, V. K.; Fulford, S. Y.; Lloyd-Jones, G. C. Angew. Chem. Int. Ed. 2005, 44, 1706-1708. https://doi.org/10.1002/anie.200462462
  45. Price, K. E.; Broadwater, S. J.; Walker, B. J.; McQuade, D. T. J. Org. Chem. 2005, 70, 3980-3987. https://doi.org/10.1021/jo050202j
  46. Price, K. E.; Broadwater, S. J.; Jung, H. M.; McQuade, D. T. Org. Lett. 2005, 7, 147-150. https://doi.org/10.1021/ol047739o
  47. Santos, L. S.; Pavam, C. H.; Almeida, W. P.; Coelho, F.; Eberlin, M. N. Angew. Chem. Int. Ed. 2004, 43, 4330-4333. https://doi.org/10.1002/anie.200460059
  48. Amarante, G. W.; Milagre, H. M. S.; Vaz, B. G.; Ferreira, B. R. V.; Eberlin, M. N.; Coelho, F. J. Org. Chem. 2009, 74, 3031-3037. https://doi.org/10.1021/jo802578t
  49. Bartoszewicz, A.; Livendahl, M.; Martin-Matute, B. Chem. Eur. J. 2008, 14, 10547- 10550. https://doi.org/10.1002/chem.200801690
  50. Abraham, D. J.; Mehanna, A. S.; Williams, F. S.; Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr. J. Med. Chem. 1989, 32, 2460- 2467. https://doi.org/10.1021/jm00131a008

Cited by

  1. A Unique Cascade Reaction between 3-Arylprop-2-inylcarboxylates and Benzaldehydes Leading to the Formation of Morita–Baylis–Hillman Adducts vol.15, pp.1, 2013, https://doi.org/10.1021/ol303319a
  2. Partial Shielding of an Imidazole Active Site in Branched/Dendritic Homogeneous Catalysts of the Baylis-Hillman Reaction vol.358, pp.22, 2016, https://doi.org/10.1002/adsc.201600421
  3. Direct Umpolung Morita–Baylis–Hillman like α‐Functionalization of Enones via Enolonium Species vol.132, pp.35, 2020, https://doi.org/10.1002/ange.202005286
  4. Direct Umpolung Morita–Baylis–Hillman like α‐Functionalization of Enones via Enolonium Species vol.59, pp.35, 2012, https://doi.org/10.1002/anie.202005286
  5. A General Method for α-Oxyacylation of Vinyl Ketones Using Koser’s Reagent vol.86, pp.23, 2021, https://doi.org/10.1021/acs.joc.1c01517