DOI QR코드

DOI QR Code

Growth and Electrochemical Behavior of Poly[Ni(saldMp)] on Carbon Nanotubes as Potential Supercapacitor Materials

  • Zhang, Yakun (State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing) ;
  • Li, Jianling (State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing) ;
  • Kang, Feiyu (Department of Materials Science and Engineering, Tsinghua University) ;
  • Wang, Xindong (State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing) ;
  • Ye, Feng (State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences) ;
  • Yang, Jun (State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences)
  • Received : 2012.02.03
  • Accepted : 2012.03.18
  • Published : 2012.06.20

Abstract

The polymer of (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), Ni(saldMp), was deposited on multi-walled carbon nanotubes (MWCNTs) substrate by the route of potential linear sweep. The nano structures of poly[Ni(saldMp)] have been obtained by adjusting the monomer concentration of 0.1, 0.2, 0.5, 1.0 and 1.5 mmol $L^{-1}$. The poly[Ni(saldMp)] prepared in acetonitrile solution with monomer concentration of 1.0 mmol $L^{-1}$ shows the fastest growth rate. The effects of potential window on charge-discharge efficiency and electrodeposition scan number on capacitance performance were discussed. Poly[Ni(saldMp)] prepared with less electrodeposition scans exhibits higher capacitance, but this goes against the improvement of the whole electrode capacitance. Sample with 8 deposition scans is the best compromise with the geometric specific capacitance 3.53 times as high as that of pure MWCNTs, and 1.24 times for the gravimetric specific capacitance under the test potential window 0.0-1.0 V.

Keywords

References

  1. Justin, P.; Ranga Rao, G. Int. J. Hydrogen. Energy 2010, 35, 9709. https://doi.org/10.1016/j.ijhydene.2010.06.036
  2. Hou, Y.; Cheng, Y.; Hobson, T.; Liu, J. Nano Lett. 2010, 10, 2727. https://doi.org/10.1021/nl101723g
  3. Yu, P.; Zhang, X.; Chen, Y.; Ma, Y. Mater. Lett. 2010, 64, 1480. https://doi.org/10.1016/j.matlet.2010.03.067
  4. Yang, M. Y.; Ni, P.; Li, Y.; He, X. X.; Liu, Z. H. Mater. Chem. Phys. 2010, 124, 155. https://doi.org/10.1016/j.matchemphys.2010.06.008
  5. Yan, J.; Wei, T.; Cheng, J.; Fan, Z. J.; Zhang, M. L. Mater. Res. Bull. 2010, 45, 210. https://doi.org/10.1016/j.materresbull.2009.09.016
  6. Xu, M. W.; Jia, W.; Bao, S. J.; Su, Z.; Dong, B. Electrochim. Acta 2010, 55, 5117. https://doi.org/10.1016/j.electacta.2010.04.004
  7. Yan, X.; Tai, Z.; Chen, J.; Xue, Q. Nanoscale 2011, 3, 212. https://doi.org/10.1039/c0nr00470g
  8. Yuan, J. K.; Dang, Z. M.; Yao, S. H.; Zha, J. W.; Zhou, T.; Li, S. T.; Bai, J. B. J. Mater. Chem. 2010, 20, 2441. https://doi.org/10.1039/b923590f
  9. Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. ACS Appl. Mater. Interfaces 2010, 2, 821. https://doi.org/10.1021/am900815k
  10. Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Nanoscale 2010, 2, 2164. https://doi.org/10.1039/c0nr00224k
  11. Liu, R.; Duay, J.; Lee, S. B. ACS Nano 2010, 4, 4299. https://doi.org/10.1021/nn1010182
  12. Wang, M. X.; Wang, C. Y.; Chen, M. M.; Wang, Y. S.; Du, X.; Li, T. Q.; Hu, Z. J. New Carbon Mater. 2010, 25, 285. https://doi.org/10.1016/S1872-5805(09)60034-2
  13. Byon, H. R.; Lee, S. W.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Carbon 2011, 49, 457. https://doi.org/10.1016/j.carbon.2010.09.042
  14. Fu, Q.; Gao, B.; Dou, H.; Hao, L.; Lu, X.; Sun, K.; Jiang, J.; Zhang, X. Synthetic. Met. 2011, 161, 373. https://doi.org/10.1016/j.synthmet.2010.12.009
  15. Geng, X.; Li, F.; Wang, D.-W.; Cheng, H.-M. Carbon 2012, 50, 344.
  16. Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. J. Power Sources 2010, 195, 3031. https://doi.org/10.1016/j.jpowsour.2009.11.057
  17. Du, X.; Guo, P.; Song, H.; Chen, X. Electrochim. Acta 2010, 55, 4812. https://doi.org/10.1016/j.electacta.2010.03.047
  18. Liu, J.; Sun, J.; Gao, L. J. Phys. Chem. C 2010, 114, 19614. https://doi.org/10.1021/jp1092042
  19. Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Yang, S. H. ACS Nano 2010, 4, 3889. https://doi.org/10.1021/nn100681d
  20. Peng, C.; Hu, D.; Chen, G. Z. Chem. Commun. 2011, 47, 4105. https://doi.org/10.1039/c1cc10675a
  21. Lang, X.; Zhang, L.; Fujita, T.; Ding, Y.; Chen, M. J. Power Sources 2012, 197, 325. https://doi.org/10.1016/j.jpowsour.2011.09.006
  22. Zou, B.; Liang, Y.; Liu, X.; Diamond, D.; Lau, K. J. Power Sources 2011, 196, 4842. https://doi.org/10.1016/j.jpowsour.2011.01.073
  23. Liu, W.; Liu, N.; Song, H.; Chen, X. New Carbon Mater. 2011, 26, 217. https://doi.org/10.1016/S1872-5805(11)60077-2
  24. Wang, Y.; Yang, C.; Liu, P. Chem. Eng. J. 2011, 172, 1137. https://doi.org/10.1016/j.cej.2011.06.061
  25. Jin, M.; Han, G.; Chang, Y.; Zhao, H.; Zhang, H. Electrochim. Acta 2011, 56, 9838. https://doi.org/10.1016/j.electacta.2011.08.079
  26. Hou, L.; Yuan, C.; Li, D.; Yang, L.; Shen, L.; Zhang, F.; Zhang, X. Electrochim. Acta 2011, 56, 6049. https://doi.org/10.1016/j.electacta.2011.04.087
  27. Shang, K.; Ai, S.; Ma, Q.; Tang, T.; Yin, H.; Han, H. Desalination 2011, 278, 173. https://doi.org/10.1016/j.desal.2011.05.017
  28. Lowe, M. A.; Kiya, Y.; Henderson, J. C.; Abruna, H. D. Electrochem. Commun. 2011, 13, 462. https://doi.org/10.1016/j.elecom.2011.02.021
  29. Hoferkamp, L. A.; Goldsby, K. A. Chem. Mater. 1989, 1, 348. https://doi.org/10.1021/cm00003a015
  30. Tchepournaya, I.; Vasilieva, S.; Logvinov, S.; Timonov, A.; Amadelli, R.; Bartak, D. Langmuir 2003, 19, 9005. https://doi.org/10.1021/la030060t
  31. Gao, F.; Li, J.; Zhang, Y.; Wang, X.; Kang, F. Electrochim. Acta 2010, 55, 6101. https://doi.org/10.1016/j.electacta.2010.05.076
  32. Petr, A.; Dunsch, L.; Neudeck, A. J. Electroanal. Chem. 1996, 412, 153. https://doi.org/10.1016/0022-0728(96)04582-2
  33. Aubert, P. H.; Audebert, P.; Roche, M.; Capdevielle, P.; Maumy, M.; Ricart, G. Chem. Mater. 2001, 13, 2223. https://doi.org/10.1021/cm010240t
  34. Vilas-Boas, M.; Freire, C.; de Castro, B.; Hillman, A. R. J. Phys. Chem. B 1998, 102, 8533. https://doi.org/10.1021/jp982160r
  35. Tedim, J.; Carneiro, A.; Bessada, R.; Patricio, S.; Magalhaes, A. L.; Freire, C.; Gurman, S. J.; Hillman, A. R. J. Electroanal. Chem. 2007, 610, 46. https://doi.org/10.1016/j.jelechem.2007.06.025
  36. Martins, M.; Boas, M. V.; de Castro, B.; Hillman, A. R.; Freire, C. Electrochim. Acta 2005, 51, 304. https://doi.org/10.1016/j.electacta.2005.04.026
  37. Vilas-Boas, M.; Santos, I. C.; Henderson, M. J.; Freire, C.; Hillman, A. R.; Vieil, E. Langmuir 2003, 19, 7460. https://doi.org/10.1021/la034525r

Cited by

  1. Electropolymerization and energy storage of poly[Ni(salphen)]/MWCNT composite materials for supercapacitors vol.134, pp.7, 2017, https://doi.org/10.1002/app.44464
  2. Understanding the Charge Storage Mechanism and Electrochemical Performance on the Poly[Ni(salen)]-modified Electrode Electropolymerized with Different Sweep Rate vol.85, pp.8, 2012, https://doi.org/10.5796/electrochemistry.85.461