DOI QR코드

DOI QR Code

Tailoring Porosity of Colloidal Boehmite Sol by Controlling Crystallite Size

  • Park, Myung-Chul (Center for Intelligent NanoBio Materials (CINBM), Department of Chemistry and Nano Science and Department of Bioinspired Science, Ewha Womans University) ;
  • Lee, Sung-Reol (Center for Intelligent NanoBio Materials (CINBM), Department of Chemistry and Nano Science and Department of Bioinspired Science, Ewha Womans University) ;
  • Kim, Hark (Center for Intelligent NanoBio Materials (CINBM), Department of Chemistry and Nano Science and Department of Bioinspired Science, Ewha Womans University) ;
  • Park, In (Center for Intelligent NanoBio Materials (CINBM), Department of Chemistry and Nano Science and Department of Bioinspired Science, Ewha Womans University) ;
  • Choy, Jin-Ho (Center for Intelligent NanoBio Materials (CINBM), Department of Chemistry and Nano Science and Department of Bioinspired Science, Ewha Womans University)
  • Received : 2012.02.24
  • Accepted : 2012.03.16
  • Published : 2012.06.20

Abstract

Boehmite sols have been prepared by crystallization of amorphous aluminum hydroxide gel obtained by hydrolysis and peptization of aluminum using acetic acid. The size of the boehmite crystallites could be controlled by Al molar concentration in amorphous gel by means of controlling grain growth at nucleation stage. The size of boehmite increases as a function of Al molar concentration. With increasing boehmite crystallite size, the $d_{(020)}$ spacing and the specific surface area decreases, whereas the pore volume increases along with pore size. Especially, the pore size of the boehmite sol particles is comparable to the crystallite size along the b axis, suggesting that the fibril thickness along the b axis among the crystallite dimensions of the boehmite contributes to the pore size. Therefore, the physical properties of boehmite sols can be determined by the crystallite size controlled as a function of initial Al concentration.

Keywords

References

  1. Wei, Y.; Yang, R.; Zhang, Y. X.; Wang, L.; Liu, J. H.; Huang, X. J. Chem. Commun. 2011, 47, 11062. https://doi.org/10.1039/c1cc14215a
  2. Nagai, N.; Suzuki, Y.; Sekikawa, C.; Nara, T. Y.; Hakuta, Y.; Tsunoda, T.; Mizukami, F. J. Mater. Chem. 2012, 22, 3234. https://doi.org/10.1039/c2jm15704g
  3. Liu, Q.; Wang, A.; Wang, X.; Gao, P.; Wang, X.; Zhang, T. Microporous Mesoporous Mater. 2008, 11, 323.
  4. Ismagilov, Z. R.; Shkrabina, R. A.; Koryabkina, N. A. Catal. Today 1999, 47, 51. https://doi.org/10.1016/S0920-5861(98)00283-1
  5. Paglia, G.; Buckley, C. E.; Rohl, A. L.; Hart, R. D.; Winter, K.; Studer, A. J.; Hunter, B. A.; Hanna, J. V. Chem. Mater. 2004, 16, 220. https://doi.org/10.1021/cm034917j
  6. Auxilio, A. R.; Andrews, P. C.; Junk, P. C.; Spiccia, L.; Neumann, D.; Raverty, W.; Vanderhoek, N.; Pringle, J. M. J. Mater. Chem. 2008, 18, 2466. https://doi.org/10.1039/b715545j
  7. Huang, X.; Meng, G.; Huang, Z.; Geng, J. J. Membrane Sci. 1997, 133, 145. https://doi.org/10.1016/S0376-7388(97)00061-6
  8. Oyama, S. T.; Hacarlioglu, P. J. Membrane Sci. 2009, 337, 188. https://doi.org/10.1016/j.memsci.2009.03.040
  9. Okada, K.; Nagashima, T.; Kameshima, Y.; Yasumori, A.; Tsukada, T. J. Colloid Interface Sci. 2002, 253, 308. https://doi.org/10.1006/jcis.2002.8535
  10. Musi , S.; Dragcevic, D.; Popovic , S. Mater. Lett. 1999, 40, 269. https://doi.org/10.1016/S0167-577X(99)00088-9
  11. Kim, T.; Lian, J.; Ma, J.; Duan, X.; Zheng, W. Cryst. Growth Des. 2010, 10, 2928. https://doi.org/10.1021/cg901422v
  12. Chiche, D.; Chaneac, C.; Revela, R.; Jolivet, J. Phys. Chem. Chem. Phys. 2011, 13, 6241. https://doi.org/10.1039/c0cp02075c
  13. Buining, P. A.; Pathmamanoharan, C.; Jansen, J. B. H.; Lekkerkerker, H. N. W. J. Am. Ceram. Soc. 1991, 74, 1303. https://doi.org/10.1111/j.1151-2916.1991.tb04102.x
  14. Bokhimi, X.; Sanchez-Valente, J.; Pedraza, F. J. Solid State Chem. 2002, 166, 182. https://doi.org/10.1006/jssc.2002.9579
  15. Zhang, Z.; Hicks, R. W.; Pauly, T. R.; Pinnavaia, T. J. J. Am. Chem. Soc. 2002, 124, 1592. https://doi.org/10.1021/ja016974o
  16. Zhu, H. Y.; Riches, J. D.; Barry, J. C. Chem. Mater. 2002, 14, 2086. https://doi.org/10.1021/cm010736a
  17. Farag, H. K.; Zoubi, M. A.; Endres, F. J. Mater. Sci. 2009, 44, 122. https://doi.org/10.1007/s10853-008-3107-y
  18. Tsukada, T.; Segawa, H.; Yasumori, A.; Okada, K. J. Mater. Chem. 1999, 9, 549. https://doi.org/10.1039/a806728g
  19. Nguefack, M.; Popa, A. F.; Rossignol, S.; Kappenstein, C. Phys. Chem. Chem. Phys. 2003, 5, 4279. https://doi.org/10.1039/b306170a
  20. Lee, C. M.; Sohn, Y. S. Bull. Korean Chem. Soc. 1985, 6, 329.
  21. Yoldas, B. E. Am. Ceram. Soc. Bull. 1975, 54, 289.
  22. Sanchez-Valente, J.; Bokhimi, X.; Hernandez, F. Langmuir 2003, 19, 3583. https://doi.org/10.1021/la020423+
  23. Vogelson, C. T.; Barron, A. R. J. Non-Cryst. Solids 2001, 290, 216. https://doi.org/10.1016/S0022-3093(01)00643-3
  24. Sugimoto, T. Chem. Eng. Technol. 2003, 26, 313. https://doi.org/10.1002/ceat.200390048
  25. Wierenga, A.; Philipse, A. P.; Lekkerkerker, H. N. W. Langmuir 1998, 14, 55. https://doi.org/10.1021/la970376z
  26. Guzman-Castillo, M. L.; Bokhimi, X.; Toledo-Antonio, A.; Salmones-Blasquez, J.; Hernandez-Beltran, F. J. Phys. Chem. B 2001, 105, 2099.
  27. Krokidis, X.; Raybaud, P.; Gobichon, A. E.; Rebours, B.; Euzen, P.; Toulhoat, H. J. Phys. Chem. B 2001, 105, 5121. https://doi.org/10.1021/jp0038310
  28. Tettenhorst, R.; Hofmann, D. A. Clays Clay Miner. 1980, 28, 373. https://doi.org/10.1346/CCMN.1980.0280507
  29. Bokhimi, X.; Toledo-Antonio, J. A.; Guzman-Castillo, M. L.; Mar-Mar, B.; Hernandez-Beltran, F.; Navarrete, J. J. Solid State Chem. 2001, 161, 319. https://doi.org/10.1006/jssc.2001.9320
  30. Gregg, S. J.; Sing, K. S. W. Adsorption Surface Area and Porosity, 2nd ed.; Academic Press: London, 1982.
  31. Rojas, F.; Kornhauser, I.; Felipe, C.; Esparza, J. M.; Cordero, S.; Domínguez, A.; Riccardo, J. L. Phys. Chem. Chem. Phys. 2002, 4, 2346. https://doi.org/10.1039/b108785a

Cited by

  1. Application of Taguchi method in the optimization of process parameters for a sol–gel-derived nano-alumina film vol.230, pp.2, 2016, https://doi.org/10.1177/1464420715581867
  2. A Reliable Method for the Preparation of Multiporous Alumina Monoliths by Ice-Templating vol.4, pp.1, 2016, https://doi.org/10.3390/inorganics4010006
  3. Continuous Fabrication of Monodisperse Ceria-Zirconia-Yttria Composite Oxide Nanoparticles Using a Novel High-Shear Agitation Reactor vol.3, pp.6, 2012, https://doi.org/10.1021/acsomega.8b00730
  4. Silica Removal from a Paper Mill Effluent by Adsorption on Pseudoboehmite and γ-Al2O3 vol.13, pp.15, 2021, https://doi.org/10.3390/w13152031