DOI QR코드

DOI QR Code

Theoretical Studies on Nitramine Explosives with -NH2 and -F Groups

  • Zhao, Guo Zheng (School of Chemical Engineering, Nanjing University of Science & Technology) ;
  • Lu, Ming (School of Chemical Engineering, Nanjing University of Science & Technology)
  • Received : 2011.11.15
  • Accepted : 2012.03.10
  • Published : 2012.06.20

Abstract

The nitramine explosives with $-NH_2$ and -F groups were optimized to obtain their molecular geometries and electronic structures at DFT-B3LYP/6-31+G(d) level. The theoretical molecular density (${\rho}$), heat of formation (HOF), detonation velocity ($D$) and detonation pressure ($P$), estimated using Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which were respectively related with the temperature. The simulation results reveal that 1,3,5,7-tetranitro-1,3,5,7-tetrazocan-2-amine (molecule B1) performs similarly to the famous explosive HMX, and 2-fluoro-1,3,5-trinitro-1,3,5-triazinane (molecule C1) and 2-fluoro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (molecule D1) outperform HMX. According to the quantitative standard of energetics and stability as an HEDC (high energy density compound), molecules C1 and D1 essentially satisfy this requirement. These results provide basic information for molecular design of novel high energetic density compounds.

Keywords

References

  1. Rahm, M.; Dvinskikh, S. V.; Furo, I.; Brinck, T. Angew. Chem. Int. Ed. 2011, 50, 1145. https://doi.org/10.1002/anie.201007047
  2. Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. J. Hazard. Mater. 2009, 161, 589. https://doi.org/10.1016/j.jhazmat.2008.04.011
  3. Li, M. M.; Li, F. S.; Shen, R. Q.; Guo, X. D. J. Hazard. Mater. 2011, 186, 2031. https://doi.org/10.1016/j.jhazmat.2010.12.101
  4. Smeu, M.; Zahid, F.; Ji, W.; Guo, H.; Jaidann, M.; Abou-Rachid, H. J. Phys .Chem. C 2011, 115, 10985. https://doi.org/10.1021/jp201756p
  5. Li, X. H.; Zhang, R. Z.; Zhang, X. Z. J. Hazard. Mater. 2010, 183, 622. https://doi.org/10.1016/j.jhazmat.2010.07.070
  6. Cho, S. G. Bull. Korean Chem. Soc. 2011, 32, 2319. https://doi.org/10.5012/bkcs.2011.32.7.2319
  7. Li, J. S. Propelllants. Explos. Pyrotech. 2010, 35, 182. https://doi.org/10.1002/prep.200900023
  8. Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 151, 289. https://doi.org/10.1016/j.jhazmat.2007.10.039
  9. Rahm, M.; Brinck, T. Chem. Eur. J. 2010, 16, 6590. https://doi.org/10.1002/chem.201000413
  10. Anders, G.; Borges, I. J. J. Phys. Chem. A 2011, 115, 9055. https://doi.org/10.1021/jp204562d
  11. Jackson, T. L.; Hooks, D. E.; Buckmaster, J. Propelllants. Explos. Pyrotech. 2011, 36, 252. https://doi.org/10.1002/prep.201000096
  12. Bhattacharya, A.; Bernstein, E. R. J. Phys. Chem. A 2011, 115, 4135. https://doi.org/10.1021/jp109152p
  13. Maiti, A.; Gee, R. H. Propelllants. Explos. Pyrotech. 2011, 36, 125. https://doi.org/10.1002/prep.201000106
  14. Song, X. L.; Li, J. C.; Hou, H.; Wang, B. S. J. Comb. Chem. 2009, 30, 1816. https://doi.org/10.1002/jcc.21182
  15. Zhang, J. Y.; Du, H. C.; Wang, F.; Gong, X. D.; Huang, Y. S. J. Phys. Chem. A 2011, 115, 6617. https://doi.org/10.1021/jp1118822
  16. Klapotke, T. M.; Piercey, D. G.; Stierstorfee, J. Propelllants. Explos. Pyrotech. 2011, 36, 160. https://doi.org/10.1002/prep.201000057
  17. Wang, G. X.; Gong, X. D.; Liu, Y.; Du, H. C.; Xu, X. J.; Xiao, H. M. J. Hazard. Mater. 2010, 177, 703. https://doi.org/10.1016/j.jhazmat.2009.12.088
  18. Zhang, J. G.; Niu, X. Q.; Zhang, S. W.; Zhang, T. L.; Huang, H. S.; Zhou, Z. N. Comput. Theor. Chem. 2011, 964, 291. https://doi.org/10.1016/j.comptc.2011.01.014
  19. Keshavarz, M. H. J. Hazard. Mater. 2011, 190, 330. https://doi.org/10.1016/j.jhazmat.2011.03.043
  20. Keshavarz, M. H.; Sadeghi, H. J. Hazard. Mater. 2009, 171, 140. https://doi.org/10.1016/j.jhazmat.2009.05.118
  21. Munday, L. B.; Chung, P. W.; Rice, B. M.; Solares, S. D. J. Phys. Chem. B 2011, 115, 4378. https://doi.org/10.1021/jp112042a
  22. Qiu, H.; Stepanov, V.; Di, S. A. R.; Chou, T.; Lee, W. Y. J. Hazard. Mater. 2011, 185, 489. https://doi.org/10.1016/j.jhazmat.2010.09.058
  23. Joseph, M. D.; Jangid, S. K.; Satpute, R. S.; Polke, B. G.; Nath, T.; Asthana, S. N.; Rao, A. S. Propelllants. Explos. Pyrotech. 2009, 34, 326. https://doi.org/10.1002/prep.200700220
  24. Podeszwa, R.; Rice, B. M.; Szalewicz, K. Phys. Chem. Chem. Phys. 2009, 11, 5512. https://doi.org/10.1039/b902015b
  25. Zhou, T. T.; Huang, F. L. J. Phys. Chem. B 2011, 115, 278. https://doi.org/10.1021/jp105805w
  26. Konek, C. T.; Mason, B. P.; Hooper, J. P.; Stoltz, C. A.; Wilkinson, J. Chem. Phys. Lett. 2010, 489, 48. https://doi.org/10.1016/j.cplett.2010.02.042
  27. Qiu, L.; Zhu, W. H.; Xiao, J. J.; Xiao, H. M. J. Phys. Chem. B 2008, 112, 3882. https://doi.org/10.1021/jp070863f
  28. Glascoe, E. A.; Zaug, J. M.; Burnham, A. K. J. Phys. Chem. A 2009, 113, 13548. https://doi.org/10.1021/jp905276k
  29. Zhang, X. W.; Zhu, W. H.; Xiao, H. M. J. Phys. Chem. A 2010, 114, 603. https://doi.org/10.1021/jp909024u
  30. Wei, T.; Zhu, W. H.; Zhang, X. W.; Li, Y. F.; Xiao, H. M. J. Phys. Chem. A 2009, 113, 9404. https://doi.org/10.1021/jp902295v
  31. Turker, L.; Atalar, T.; Gumus, S.; Camur, Y. J. Hazard. Mater. 2009, 167, 440. https://doi.org/10.1016/j.jhazmat.2008.12.134
  32. Becke, A. D. J. Chem. Phys. 1992, 97, 9173. https://doi.org/10.1063/1.463343
  33. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  34. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  35. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q. K.; Morokuma, D. K.; Malick, A. D.; Rabuck, K.; Raghavachari, J. B.; Foresman, J. C.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, Gaussian, Inc.; Pittsburgh PA 2003.
  36. Hill, T. L. Introduction to Statistic Thermodynamics Addison; Wesley: New York, 1960.
  37. Kamlet, M. J.; Jacobs, S. T. J. Chem. Phys. 1968, 48, 23. https://doi.org/10.1063/1.1667908
  38. Xiao, H. M.; Xu, X. J.; Qiu, L. Theoretical Design of High Energy Density Materials; Science Press: Beijing, 2008. (in Chinese)
  39. Zhang, X. H.; Yun, Z. H. Explosive Chemistry; National Defence Industry Press: Beijing, 1989. (in Chinese)
  40. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209. https://doi.org/10.1002/jcc.540100208
  41. Williams, C. I.; Whitehead, M. A. J. Mol. Struct. (Theochem) 1997, 393, 9. https://doi.org/10.1016/S0166-1280(96)04887-7
  42. Ma, X.; Schobert, H. H. J. Phys. Chem. A 2000, 104, 1064. https://doi.org/10.1021/jp993499w
  43. Xu, X. J.; Xiao, H. M.; Gong, X. D.; Ju, X. H.; Chen, Z. X. J. Phys. Chem. A 2005, 109, 11268. https://doi.org/10.1021/jp040472q
  44. Xu, X. J.; Xiao, H. M.; Ju, X. H.; Gong, X. D.; Zhu, W. H. J. Phys. Chem. A 2006, 110, 5929. https://doi.org/10.1021/jp0575557
  45. Qiu, L.; Xiao, H. M.; Gong, X. D.; Ju, X. H.; Zhu, W. H. J. Phys. Chem. A 2006, 110, 3797. https://doi.org/10.1021/jp054169g
  46. Qiu, L.; Xiao, H. M.; Ju, X. H.; Gong, X. D. Int. J. Quant. Chem. 2005, 105, 48. https://doi.org/10.1002/qua.20674
  47. Lide, D. R., Ed., CRC Handbook of Chemistry and Physics; CRC Press LLC: Boca Raton, Florida, 2002.
  48. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  49. Politzer, P.; Murray, J. S. Central. Europ. J. Energet. Mater. 2011, 8, 209.
  50. Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives; John Wiley & Sons: 2007.
  51. Pagoria, P. F.; Lee, J. S.; Mitchell, A. R.; Schmidt, R. D. Thermochim. Acta 2002, 384, 187. https://doi.org/10.1016/S0040-6031(01)00805-X
  52. Chung, G.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. A 2000, 104, 5647. https://doi.org/10.1021/jp0004361

Cited by

  1. DFT Studies on Two Novel Explosives Based on the Guanidine-Fused Bicyclic Structure vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1043
  2. Explosive properties of nanosized diacetone diperoxide and its nitro derivatives: a DFT study vol.146, pp.9, 2015, https://doi.org/10.1007/s00706-015-1419-6
  3. Pulsed-UV 시스템을 이용한 염소계 유기화합물 및 화약류 제거에 관한 연구 vol.18, pp.1, 2012, https://doi.org/10.7857/jsge.2013.18.1.078