DOI QR코드

DOI QR Code

Divergent Process for C10, C11 and C12 ω-Amino Acid and α,ω-Dicarboxylic Acid Monomers of Polyamides from Castor Oil as a Renewable Resource

  • Koh, Moo-Hyun (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Hyeon-Jeong (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Shin, Na-Ra (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Hyun-Su (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Yoo, Dong-Won (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Young-Gyu (Department of Chemical and Biological Engineering, Seoul National University)
  • Received : 2012.02.25
  • Accepted : 2012.03.02
  • Published : 2012.06.20

Abstract

Polyamides have great potentials for diverse applications and the present production of their monomers mostly relies on resources from fossil fuel. Starting from undecylenic acid, a natural resource, we have developed both divergent and efficient processes for $C_{10}$, $C_{11}$ and $C_{12}$ ${\omega}$-amino acid and ${\alpha},{\omega}$-dicarboxylic acid monomers of the polyamides.

Keywords

References

  1. Sasmal, A.; Sahoo, D.; Nanda, R.; Nayak, P.; Nayak, P. L.; Mishra, J. K.; Chang, Y. W.; Yoon, J. Y. Polym. Compos. 2009, 30, 708. https://doi.org/10.1002/pc.20653
  2. Nayak, P. L. J. Macromol. Sci. Polymer Rev. 2000, 40, 1. https://doi.org/10.1081/MC-100100576
  3. Eissen, M.; Metzger, J. O.; Schmidt, E.; Schneidewind, U. Angew. Chem. Int. Ed. 2002, 41, 414. https://doi.org/10.1002/1521-3773(20020201)41:3<414::AID-ANIE414>3.0.CO;2-N
  4. Lindblad, M. S.; Liu, Y.; Albertsson, A.; Ranucci, E.; Karlsson, S. Adv. Polym. Sci. 2002, 157, 139. https://doi.org/10.1007/3-540-45734-8_5
  5. Bhowmick, A. K.; Stephens, H. L. Handbook of Elastomers, 2nd ed.; Marcel Dekker: 2001; pp 417-432.
  6. Drobny, J. G. Handbook of Thermoplastic Elastomers; William Andrew: New York, 2007; pp 306-310.
  7. Gandini, A. Macromolecules 2008, 41, 9491. https://doi.org/10.1021/ma801735u
  8. Biermann, U.; Metzger, J. O. Topics Catal. 2004, 27, 119. https://doi.org/10.1023/B:TOCA.0000013546.97468.fa
  9. Dubois, J. L. W.O. Patent 2010004219 A2 20100114, 2010.
  10. Mikhailov, M.; Kabaivanov, Vl.; Shopov, Iv. Godishnikna Khimiko-Tekhnologicheskiya Institut. 1958, 5, 53.
  11. Ayorinde, F. O.; Nana, E. Y.; Nicely, P. D.; Woods, A. S.; Price, E. O.; Nwaonicha, C. P. J. Am. Oil Chem. Soc. 1997, 74, 531. https://doi.org/10.1007/s11746-997-0176-z
  12. Sisido, K.; Kazama, Y.; Kodama, H.; Nozaki, H. J. Am. Chem. Soc. 1959, 81, 5817. https://doi.org/10.1021/ja01530a066
  13. Kalgutkar, A. S.; Crews, B. C.; Marnett, L. J. J. Med. Chem. 1996, 39, 1692. https://doi.org/10.1021/jm950872p
  14. Periasamy, M.; Narayana, C.; Anitha, M. Indian J. Chem. B 1986, 25, 844.
  15. Fabrichnyi, B. P.; Shalavina, I. F.; Gol'dfarb, Y. L. Zh. Obshch. Khim. 1958, 28, 2520.
  16. Kharasch, M. S.; Sosnovsky, G. J. Org. Chem. 1958, 23, 1322. https://doi.org/10.1021/jo01103a021
  17. Zahn, H.; Stolper, H. D.; Heidemann, G. Chem. Ber. 1965, 98, 3251. https://doi.org/10.1002/cber.19650981022
  18. Das, G.; Trivedi, R. K.; Vasishtha, A. K. J. Am. Oil Chem. Soc. 1989, 66, 938. https://doi.org/10.1007/BF02682613
  19. Marshall, J. A.; Garofalo, A. W. J. Org. Chem. 1993, 58, 3675. https://doi.org/10.1021/jo00066a019
  20. Ackman, R. G.; Retson, M. E.; Gallay, L. R.; Vandenheuvel, F. A. Can. J. Chem. 1961, 39, 1956 https://doi.org/10.1139/v61-262
  21. Noureddini, H.; Kanabur, M. J. Am. Oil Chem. Soc. 1999, 76, 305. https://doi.org/10.1007/s11746-999-0236-7
  22. McNesby, J. R.; Heller, C. A., Jr. Chem. Rev. 1954, 54, 325. https://doi.org/10.1021/cr60168a004
  23. Garratt, P. J.; Doecke, C. W.; Weber, J. C.; Paquette, L. A. J. Org. Chem. 1986, 51, 449. https://doi.org/10.1021/jo00354a006
  24. Smith, M. B.; March, J. March's Advanced Organic Chemistry, 6th ed.; Wiley: New York, 2007; pp 1288-1291
  25. Gross, T.; Seayad, A. M.; Ahmad, M.; Beller, M. Org. Lett. 2002, 4, 2055. https://doi.org/10.1021/ol0200605
  26. Henry, L. C. R. Hebd. Seances. Acad. Sci. 1895, 120, 1265.
  27. Luzzio, F. A. Tetrahedron. 2001, 57, 915. https://doi.org/10.1016/S0040-4020(00)00965-0
  28. Nef, J. U. Liebigs Ann. Chem. 1894, 280, 263. https://doi.org/10.1002/jlac.18942800209
  29. Ito, Y.; Ohashi, Y.; Miyagishima, T. Carbohyd. Res. 1969, 9, 125. https://doi.org/10.1016/S0008-6215(00)82895-5
  30. Ballini, R.; Petrini, M. Tetrahedron. 2004, 60, 1017. https://doi.org/10.1016/j.tet.2003.11.016
  31. Knoevenagel, E. Chem. Ber. 1898, 31, 2596. https://doi.org/10.1002/cber.18980310308
  32. Kemme, S. T.; Smejkal, T.; Breit, B. Chem. Eur. J. 2010, 16, 3423. https://doi.org/10.1002/chem.200903223

Cited by

  1. The Nitro to Carbonyl Conversion (Nef Reaction): New Perspectives for a Classical Transformation vol.357, pp.11, 2015, https://doi.org/10.1002/adsc.201500008
  2. 천연 올레인산 기반 폴리아미드계 TPEs 단량체 합성 vol.48, pp.1, 2012, https://doi.org/10.7473/ec.2013.48.1.24
  3. Bioenzymatic and Chemical Derivatization of Renewable Fatty Acids vol.9, pp.10, 2019, https://doi.org/10.3390/biom9100566
  4. Multilayer Engineering of Enzyme Cascade Catalysis for One-Pot Preparation of Nylon Monomers from Renewable Fatty Acids vol.10, pp.None, 2012, https://doi.org/10.1021/acscatal.9b05426