DOI QR코드

DOI QR Code

Synthesis and Photovoltaic Properties of Polymers Based on Cyclopentadithiophene and Benzimidazole Units

  • Song, Su-Hee (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Park, Sei-Jung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kwon, Soon-Cheol (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Shim, Joo-Young (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Jin, Young-Eup (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Sung-Heum (Department of Physics, Pukyong National University) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of polymer Science and Engineering, Pusan National University) ;
  • Lee, Kwang-Hee (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Suh, Hong-Suk (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2012.02.15
  • Accepted : 2012.02.29
  • Published : 2012.06.20

Abstract

The new semiconducting copolymers with 4,4-dialkyl-$4H$-cyclopenta[2,1-$b$:3,4-$b^{\prime}$]dithiophene and 2,2-dimethyl-$2H$-benzimidazole units were synthesized. The fused aromatic rings, such as cyclopentadithiophene (CPDT) unit, can make the polymer backbone more rigid and coplanar, which induces long conjugation length, narrow band gap, and strong intermolecular ${\pi}-{\pi}$ interaction. The stacking ability was controlled through attaching of linear or branched alkyl side chains. The spectra of PEHCPDTMBI and PHCPDTMBI in the solid films show absorption bands with maximum peaks at 401, 759 and 407, 768 nm, and the absorption onsets at 925 and 954 nm, corresponding to band gaps of 1.34 and 1.30 eV, respectively. The devices comprising PHCPDTMBI with $TiO_X$ showed a $V_{OC}$ of 0.39 V, a $J_{SC}$ of 1.14 $mA/cm^2$, and a $FF$ of 0.34, giving a power conversion efficiency of 0.15%. The PHCPDTMBI with linear alkyl chain on CPDT shows good solubility in organic solvent with higher PCE value than that of PEHCPDTMBI.

Keywords

References

  1. Duan, C.; Cai, W.; Huang, F.; Zhang, J.; Wang, M.; Yang, T.; Zhong, C.; Gong, X.; Cao, Y. Macromolecules 2010, 43, 5262. https://doi.org/10.1021/ma100616f
  2. Mondal, R.; Miyaki, N.; Becerril, H. A.; Norton, J. E.; Parmer, J.; Mayer, A. C.; Tang, M. L.; Bredas, J. L.; McGehee, M. D.; Bao, Z. Chem. Mater. 2009, 21, 3618. https://doi.org/10.1021/cm900788e
  3. Gadisa, A.; Mammo, W.; Andersson, L. M.; Admassie, S.; Zhang, F.; Andersson, M. R.; Inganas, O. Adv. Funct. Mater. 2007, 17, 3836. https://doi.org/10.1002/adfm.200700441
  4. Song, S.; Jin, Y.; Park, S. H.; Cho, S.; Kim, I.; Lee, K.; Heeger, A. J.; Suh, H. J. Mater. Chem. 2010, 20, 6517. https://doi.org/10.1039/c0jm00772b
  5. Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868. https://doi.org/10.1021/cr900182s
  6. Kroon, R.; Lenes, M.; Hummelen, J. C.; Blom, P. W. M.; De Boer, B. Polym. Rev. 2008, 48, 531. https://doi.org/10.1080/15583720802231833
  7. Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photonics 2009, 3, 297. https://doi.org/10.1038/nphoton.2009.69
  8. Cho, S.; Seo, J. H.; Kim, S. H.; Song, S.; Jin, Y.; Lee, K.; Suh, H.; Heeger, A. J. Appl. Phys. Lett. 2008, 93, 263301/1.
  9. Song, S.; Jin, Y.; Kim, S. H.; Moon, J.; Kim, K.; Kim, J. Y.; Park, S. H.; Lee, K.; Suh, H. Macromolecules 2008, 41, 7296. https://doi.org/10.1021/ma801420e
  10. Mikroyannidis J. A.; Suresh, P.; Sharma, G. D. Org. Electron. 2010, 11, 311. https://doi.org/10.1016/j.orgel.2009.11.010
  11. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222. https://doi.org/10.1126/science.1141711
  12. Egbe, D. A. M.; Trk, S.; Rathgeber, S.; Khnlenz, F.; Jadhav, R.; Wild, A.; Birckner, E.; Adam, G.; Pivrikas, A.; Cimrova, V.; Knr, G.; Sariciftci, N. S.; Hoppe, H. Macromolecular 2011, 43, 1261.
  13. Egbe, D. A. M.; Nguyen, L. H.; Hoppe, H.; M€uhlbacher, D.; Sariciftci, N. S. Macromol. Rapid Commun. 2005, 26, 1389. https://doi.org/10.1002/marc.200500425
  14. Chen, Z. K.; Huang, W.; Wang, L. H.; Kang, E. T.; Chen, B. T.; Lee, C. S.; Lee, S. T. Macromolecules 2000, 33, 9015. https://doi.org/10.1021/ma0005670
  15. Tsami, A.; Yang, X. H.; Galbrecht, F.; Farrell, T.; Li, H.; Adamczyk, S.; Heiderhoff, R.; Balk, L. J.; Neher, D.; Holder, E. J. Polym. Sci. Polym. Chem. 2007, 45, 4773. https://doi.org/10.1002/pola.22231
  16. Song, S.; Park, S. H.; Jin, Y.; Park, J.; Shim, J. Y.; Kim, I.; Lee, H.; Lee, K.; Suh, H. J. Polym. Sci. Polym. Chem. 2010, 48, 4567. https://doi.org/10.1002/pola.24248
  17. Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Mühlbacher, D.; Scharber, M.; Brabec, C. Macromolecules 2007, 40, 1981. https://doi.org/10.1021/ma062376o
  18. Kanimozhi, C.; Balraju, P.; Sharma, G. D.; Patil, S. J. Phys. Chem. B 2010, 114, 3095. https://doi.org/10.1021/jp909183x

Cited by

  1. Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells vol.4, pp.82, 2014, https://doi.org/10.1039/C4RA07064J
  2. TPD- and DPP-based Small Molecule Donors Containing Pyridine End Groups for Organic Photovoltaic Cells vol.37, pp.2, 2016, https://doi.org/10.1002/bkcs.10647
  3. Effect of linking groups on 2, 5-disubstituted thiophene with chalcone as the side arm containing bent-core materials vol.15, pp.2, 2017, https://doi.org/10.1080/1539445X.2016.1242499
  4. π–π stacking induced high current density and improved efficiency in ternary organic solar cells vol.10, pp.21, 2018, https://doi.org/10.1039/C8NR01421C
  5. Novel heterocyclic based blue and green emissive materials for opto-electronics vol.46, pp.None, 2015, https://doi.org/10.1016/j.optmat.2015.04.038
  6. Highly fluorescent semiconducting pyrazoline materials for optoelectronics vol.46, pp.None, 2012, https://doi.org/10.1016/j.optmat.2015.05.045