DOI QR코드

DOI QR Code

SnO2/SiO2 Nanocomposite Catalyzed One-Pot Synthesis of 2-Arylbenzothiazole Derivatives

  • Yelwande, Ajeet A. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Navgire, Madhukar E. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Tayde, Deepak T. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Arbad, Balasaheb R. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Lande, Machhindra K. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • 투고 : 2011.11.25
  • 심사 : 2012.02.29
  • 발행 : 2012.06.20

초록

$SnO_2/SiO_2$ nanocomposite has been synthesized by using sol-gel method. Prepared catalytic materials has been well characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmer-Teller (BET) surface area, and temperature-programmed desorption of ammonia ($NH_3$-TPD). $SnO_2/SiO_2$ nanocomposite catalyzed synthesis of 2-arylbenzothiazoles by the cyclocondensation of 2-aminothiophenol and aromatic aldehydes under reflux condition in 1:1 EtOH:$H_2O$. After completion of the reaction, catalyst can be recovered efficiently and reused with consistent activity.

키워드

참고문헌

  1. Thomas, J. M. Sci. Am. 1992, 266, 112.
  2. Guttmann, A. T.; Grasselli, R. K. Appl. Catal. 1983, 9, 57.
  3. Dupont, P.; Vedrine, J. C.; Paumard, E.; Hecquet, G. Appl. Catal. A: Gen. 1995, 129, 217. https://doi.org/10.1016/0926-860X(95)00099-2
  4. Summitt, R.; Marley, J. A.; Borrelli, N. F. J. Phys. Chem. Solids 1964, 25, 1465. https://doi.org/10.1016/0022-3697(64)90063-0
  5. Kim, T. W.; Lee, D. U.; Choo, D. C.; Kim, J. H.; Kim, H. J.; Jeong, J. H.; Jung, M.; Bahang, J. H.; Park, H. L.; Yoon, Y. S.; Kim, J. Y. J. Phys. Chem. Solids 2002, 63, 881. https://doi.org/10.1016/S0022-3697(01)00243-8
  6. Moustafid, T. E.; Cachet, H.; Tribollet, B.; Festy, D. Electrochim. Acta 2002, 47, 1209. https://doi.org/10.1016/S0013-4686(01)00845-3
  7. Okuya, M.; Kaneko, S.; Hiroshima, K.; Yaggi, I.; Murakami, K. J. Eur. Ceram. Soc. 2001, 21, 2099. https://doi.org/10.1016/S0955-2219(01)00180-7
  8. Chen, F. L.; Liu, M. L. Chem. Commun. 1999, 1829.
  9. Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Chem. Mater. 2005, 17, 3297. https://doi.org/10.1021/cm048003o
  10. Moulson, A. J.; Herbert, J. M. Electroceramics; Chapman & Hall: New York, 1990.
  11. Shimizu, Y.; Egashira, M. MRS Bull. 1999, 24, 18. https://doi.org/10.1557/S0883769400052465
  12. Wang, H. C.; Li, Y.; Yang, M. J. Sens. Actuators. B Chem. 2006, 119, 380. https://doi.org/10.1016/j.snb.2005.12.037
  13. Li, G. J.; Zhang, X. H.; Kawi, S. Sens. Actuators. B Chem. 1999, 60, 64. https://doi.org/10.1016/S0925-4005(99)00245-2
  14. Chen, Z. W.; Lai, J. K. L.; Shek, C. H. Phys. Rev. B 2004, 70, 165314. https://doi.org/10.1103/PhysRevB.70.165314
  15. Dieguez, A.; Rodriguez, A. R.; Vila, A.; Morante, J. R. J. Appl. Phys. 2001, 90, 1550-1557. https://doi.org/10.1063/1.1385573
  16. Arai, T. J. Phys. Soc. Jpn. 1960, 15, 916. https://doi.org/10.1143/JPSJ.15.916
  17. Jeong, J.; Choi, S. P.; Chang, C. I.; Shin, D. C.; Park, J. S.; Lee, B. T.; Park, Y. J.; Song, H. J. Solid State Commun. 2003, 127, 595. https://doi.org/10.1016/S0038-1098(03)00614-8
  18. Santos, L. R. B.; Chartier, T.; Pagnoux, C.; Baumard, J. F.; Santilli, C. V.; Pulcinelli, S. H.; Larbot, A. J. Eur. Ceram. Soc. 2004, 24, 3713. https://doi.org/10.1016/j.jeurceramsoc.2004.03.003
  19. Grzeta, B.; Tkalcec, E.; Goebbert, C.; Takeda, M.; Takahashi, M.; Nomura, K.; Jaksic, M. J. Phys. Chem. Solids 2002, 63, 765. https://doi.org/10.1016/S0022-3697(01)00226-8
  20. Antonio, J. A. T.; Baez, R. G.; Sebastian, P. J.; Vazquez, A. J. Solid State Chem. 2003, 174, 241. https://doi.org/10.1016/S0022-4596(03)00181-6
  21. Zhang, J.; Gao, L. J. Solid State Chem. 2004, 177, 1425. https://doi.org/10.1016/j.jssc.2003.11.024
  22. Sadykov, V. A.; Pavlova, S. N.; Saputina, S. N.; Zolotarskii, I. A.; Pakhomov, N. A.; Moroz, E. M.; Kuzmin, V. A.; Kalinkin, A. V. Catal. Today 2000, 61, 93. https://doi.org/10.1016/S0920-5861(00)00362-X
  23. Hagemeyer, A.; Hogan, Z.; Schlichter, M.; Smaka, B.; Streukens, G.; Turner, H.; Volpe, J. A.; Weinberg, H.; Yaccato, K. Appl. Catal. A. Gen. 2007, 317, 139. https://doi.org/10.1016/j.apcata.2006.09.040
  24. Khder, A. E. R. S. Appl. Catal. A. Gen. 2008, 343, 109. https://doi.org/10.1016/j.apcata.2008.03.027
  25. Li, J.; Hao, J.; Fu, L.; Liu, Z.; Cui, X. Catal. Today 2004, 90, 215. https://doi.org/10.1016/j.cattod.2004.04.029
  26. Gavagnin, R.; Biasetto, L.; Pinna, F.; Strukul, G. Appl. Catal. B Env. 2002, 38, 91. https://doi.org/10.1016/S0926-3373(02)00032-2
  27. Zhao, D. Y.; Yang, P. D.; Huo, Q. S.; Chmelka, B. F.; Stucky, G. D. Solid State Mater. Sci. 1998, 3, 111. https://doi.org/10.1016/S1359-0286(98)80073-9
  28. Ren, Y.; Qian, L. P.; Yue, B.; He, H. Y. Chin. J. Catal. 2003, 24, 947.
  29. Liu, S. X.; Yue, B.; Rao, J.; Zhou, Y.; He, H. Y. Mater. Lett. 2006, 60, 154. https://doi.org/10.1016/j.matlet.2005.08.008
  30. Lam, K. F.; Yeung, K. L.; McKay, G. Environ. Sci. Technol. 2007, 41, 3329. https://doi.org/10.1021/es062370e
  31. Park, M. S.; Wang, G. X.; Kang, Y. M.; Kim, S. Y.; Liu, H. K.; Dou, S. X. Electrochem. Commun. 2007, 9, 71. https://doi.org/10.1016/j.elecom.2006.08.031
  32. Hutchinson, I.; Bradshaw, T. D.; Matthews, C. S.; Stevens, M. F. G.; Westwell, A. D. Bioorg. & Med. Chem. Lett. 2003, 13, 471. https://doi.org/10.1016/S0960-894X(02)00930-7
  33. Huang, S. T.; Hsei, I.-J.; Chen, C. Bioorg. Med. Chem. Lett. 2006, 14, 6106. https://doi.org/10.1016/j.bmc.2006.05.007
  34. Alaimo, R. J.; Pelosi, S. S.; Freedman, R. J. Pharm. Sci. 1978, 67, 281. https://doi.org/10.1002/jps.2600670247
  35. Das, J.; Moquin, R. V.; Liu, C.; Doweyko, A. M.; Defex, H. F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C. J. Bioorg. Med. Chem. Lett. 2003, 13, 2587. https://doi.org/10.1016/S0960-894X(03)00511-0
  36. Hays, S. J.; Rice, M. J.; Ortwine, D. F.; Johnson, G.; Schwarz, R. D.; Boyd, D. K.; Copeland, L. F.; Vartanian, M. G.; Boxer, P. A. J. Pharm. Sci. 1994, 83, 1425. https://doi.org/10.1002/jps.2600831013
  37. Foscolos, G.; Tsatsas, G.; Champagnac, A.; Pommier, M. Ann. Pharm. Fr. 1977, 35, 295.
  38. Paget, C. J.; Kisner, K.; Stone, R. L.; Delong, D. C. J. Med. Chem. 1969, 12, 1016. https://doi.org/10.1021/jm00306a011
  39. Gong, B.; Hong, F.; Kohm, C.; Bonham, L.; Klein, P. Bioorg. Med. Chem. Lett. 2004, 14, 1455. https://doi.org/10.1016/j.bmcl.2004.01.023
  40. Ivanov, S. K.; Yuritsyn, V. S. Chem. Abstr. 1971, 74, 124487m.
  41. Ben-Alloum, A.; Bakkas, S.; Soufiaoui, M. Tetrahedron Lett. 1997, 38, 6395. https://doi.org/10.1016/S0040-4039(97)01490-1
  42. Ranu, B. C.; Jana, R.; Dey, S. Chem. Lett. 2004, 33, 274. https://doi.org/10.1246/cl.2004.274
  43. Li, Y.; Wang, G. Y.; Wang, J. Y.; Jacquline, L. Chem. Lett. 2006, 35, 460. https://doi.org/10.1246/cl.2006.460
  44. Moghadhan, F. M.; Ismaili, H.; Bardajee, G. R. Heteroatom Chem. 2006, 17, 136. https://doi.org/10.1002/hc.20191
  45. Ryabukhin, S. V.; Plaskon, A. S.; Volochnyuk, D. M.; Tolmachev, A. A. Synthesis 2006, 21, 3715.
  46. Chakrabarti, A. K.; Rudrawar, S.; Jadhav, K. B.; Kaur, B.; Chankashwara, V. S. Green Chem. 2007, 9, 1335. https://doi.org/10.1039/b710414f
  47. Praveen, C.; Hemanthkumar, K.; Muralidharan, D.; Perumal, P. T. Tetrahedron 2008, 64, 2369. https://doi.org/10.1016/j.tet.2008.01.004
  48. Bahrami, K.; Khodaei, M. M.; Naali, F. J. Org. Chem. 2008, 73, 6835.
  49. Bose, S. D.; Idrees, M.; Srikanth, B. Synthesis 2007, 6, 819.
  50. Yelwande, A. A.; Arbad, B. R.; Lande, M. K. S. Afr. J. Chem. 2010, 63, 199.
  51. Rathod, S. B.; Arbad, B. R.; Lande, M. K. Chin. J. Catal. 2010, 31, 631. https://doi.org/10.1016/S1872-2067(09)60078-4
  52. McCarthy, G.; Welton, J. Powder Diffr. 1989, 4, 156. https://doi.org/10.1017/S0885715600016638
  53. Gnanam, S.; Rajendran, V. Digest J. Nanomaterials Biostrucures 2010, 5, 623.
  54. Wang, Y.; Ma, C.; Sun, X.; Li, H. Nanotechnol. 2002, 13, 565. https://doi.org/10.1088/0957-4484/13/5/304
  55. Deshpande, N. G.; Gudage, Y. G.; Ramphal Sharma, J. C.; Vyas, J. B.; Kim, Lee, Y. P. Sens. Actuators. B Chem. 2009, 138, 76. https://doi.org/10.1016/j.snb.2009.02.012

피인용 문헌

  1. A ball-milling strategy for the synthesis of benzothiazole, benzimidazole and benzoxazole derivatives under solvent-free conditions vol.16, pp.12, 2014, https://doi.org/10.1039/C4GC01142B
  2. -aminothiophenol and its derivatives as versatile synthons vol.35, pp.5, 2014, https://doi.org/10.1080/17415993.2014.934245
  3. Correlations in infrared spectra of nanostructures based on mixed oxides vol.57, pp.12, 2015, https://doi.org/10.1134/S1063783415120069
  4. Characterisation of acidic properties of the surface of SiO2–SnO2 obtained by sol-gel method in anhydrous conditions vol.52, pp.5, 2016, https://doi.org/10.1134/S2070205116050178
  5. ) siloxane precursors to tinsilicate materials: synthesis, spectral, structural and photocatalytic studies vol.6, pp.3, 2016, https://doi.org/10.1039/C5RA23424G
  6. SnO2 nanoparticles as an efficient heterogeneous catalyst for the synthesis of 2H-indazolo[2,1-b]phthalazine-triones vol.7, pp.3, 2017, https://doi.org/10.1007/s40097-017-0238-1
  7. under Ultrasound Irradiation vol.64, pp.1, 2016, https://doi.org/10.1002/jccs.201600200
  8. perovskite nanocomposites: synthesis, properties and heterogeneous catalytic performance pp.1369-9261, 2018, https://doi.org/10.1039/C8NJ04133D
  9. Convenient synthesis of spirooxindoles using SnO2 nanoparticles as effective reusable catalyst at room temperature and study of their in vitro antimicrobial activity pp.1735-2428, 2019, https://doi.org/10.1007/s13738-019-01598-2
  10. Overview on the recently developed thiazolyl heterocycles as useful therapeutic agents vol.191, pp.6, 2012, https://doi.org/10.1080/10426507.2015.1119143
  11. An efficient one-pot three-component synthesis of 7-amino-2, 4-dioxo-5-aryl-1,3,4,5-tetrahydro-2 H-pyrano[2,3-d]pyrimidine-6-carbonitriles catalyzed by SnO2/SiO2 nanocomposite vol.46, pp.12, 2012, https://doi.org/10.1007/s11164-020-04273-x
  12. Solid‐Supported Materials‐Based Synthesis of 2‐Substituted Benzothiazoles: Recent Developments and Sanguine Future vol.6, pp.25, 2012, https://doi.org/10.1002/slct.202101368
  13. Synthesis of Organosulfur and Related Heterocycles under Mechanochemical Conditions vol.86, pp.20, 2021, https://doi.org/10.1021/acs.joc.1c01454