DOI QR코드

DOI QR Code

Bactericidal Efficacy of Vital-Oxide®, Disinfectant Solution Against Salmonella Typhimurium and Brucella Ovis

  • Cha, Chun-Nam (Engineering Research Institute, Department of Industrial Systems Engineering, Gyeongsang National University) ;
  • Lee, Yeo-Eun (Department of Environmental Health, Graduate School of Public Health, Gyeongsang National University) ;
  • Kang, In-Jin (Department of Environmental Health, Graduate School of Public Health, Gyeongsang National University) ;
  • Yoo, Chang-Yeul (Department of Computer Information, Gyeongnam Provincial Namhae College) ;
  • An, Sun-Jeong (Department of Occupational Therapy, Inje University) ;
  • Kim, Suk (Research Institute of Live Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu-Jang (Research Institute of Live Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2012.02.07
  • Accepted : 2012.03.12
  • Published : 2012.03.31

Abstract

$Salmonella$ spp. and $Brucella$ spp. have caused a considerable disease of farmed animals and economic loss in animal farming and food industry. In this study, the disinfection efficacy of Vital-$Oxidel^{(R)}$, a commercial disinfectant, composed to chlorine dioxide, betaine hydrochloride, and propylene glycol was evaluated against $S.$ $typhimurium$ and $Brucella$ $ovis$. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at $4^{\circ}C$. Vital-$Oixdel^{(R)}$ and test bacteria were diluted with distilled water (DW), hard water (HW) or organic matter suspension (OM) according to treatment condition. On OM condition, the bactericidal activity of Vital-$Oixdel^{(R)}$ against S. typhimurium and Brucella ovis was lowered compared to that on HW condition. As Vital-$Oxidel^{(R)}$ possesses bactericidal efficacy against animal pathogenic bacteria such as $S.$ $typhimurium$ and $Brucella$ $ovis$, this disinfectant solution can be used to control the spread of bacterial diseases.

살모넬라와 부루셀라는 가축에 심각한 질병을 유발하며, 축산업과 식품산업에 많은 경제적 손실을 초래하고 있다. 본 연구에서는, 이산화염소와 베타인 염산염을 주성분으로 한 소독제 바이탈옥사이드의 $Salmonella$ $typhimurium$$Brucella$ $ovis$에 대한 효력시험을 수행하였다. 배지희석법을 이용한 살균효력시험은 $4^{\circ}C$에서 30분 동안 시험 세균을 희석 소독제에 노출시켜 소독제의 가장 효과적인 낮은 희석배수를 결정하는 시험이다. 바이탈옥사이드와 시험 세균들을 처리조건에 따라 증류수, 경수, 그리고 유기물 등으로 희석하여 반응을 시켰다. 유기물 조건에서, $Salmonella$ $typhimurium$$Brucella$ $ovis$에 대한 바이탈옥사이드의 살균력은 경수조건에서의 살균력과 비교하여 낮게 나타났는데, 이는 유기물들에 의한 소독제의 살균 유효성분에 대한 저해작용에 따른 것으로 생각된다. 바이탈옥사이드는 $Salmonella$ $typhimurium$$Brucella$ $ovis$와 같은 가축병원성 질병들에 대해 살균효과를 갖고 있기 때문에, 이 소독제는 세균성 질병의 확산을 제어하는데 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Cleaveland, S., Laurenson, M.K. and Taylor. L.H.: Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. B. Biol. Sci. 356, 991-999 (2001). https://doi.org/10.1098/rstb.2001.0889
  2. Kim, G.S., Kim, D.H., Lim, J.J., Lee, J.J., Han, D.Y., Lee, W.M., Jung, W.C., Min, W.G., Won, C.G., Rhee, M.H., Lee, H.J. and Kim, S.: Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen Salmonella within the raw 64.7 macrophage. Biol. Pharm. Bull. 31, 2012-2017 (2009).
  3. Kim, D.H., Lim, J.J., Lee, J.J., Jung, W.C., Shin, H.J., Lee, H.J., Kim, G.S. and Kim, S.: Antibacterial and therapeutic effects of Houttuynia cordata ethanol extract for murine salmonellosis. Kor. J. Environ. Agricul. 27, 156-162 (2008). https://doi.org/10.5338/KJEA.2008.27.2.156
  4. Valle, E. and Guiney, D.G.: Characterization of salmonellainduced cell death in human macrophage-like THP-1 cells. Infect. Immun. 73, 2835-2840 (2005). https://doi.org/10.1128/IAI.73.5.2835-2840.2005
  5. Sorrells, K.M., Speck, M.L. and Warren, J.A.: Pathogenicity of Salmonella gallinarum after metabolic injury by freezing. Appl. Environ. Microbiol. 19, 39-43 (1970).
  6. Beuchat, L.R. and Heaton, E.K.: Salmonella survival on pecans as influenced by processing and storage conditions. Appl. Environ. Micobiol. 29, 795-801 (1975).
  7. Katsuda, K., Kohmoto, M., Kawashima, K. and Tsunemitsu, H.: Frequency of enteropathogen detechtion in sucking and weaned pigs with diarrhea in Japan. J. Vet. Diagn. Invest. 18, 350-354 (2006). https://doi.org/10.1177/104063870601800405
  8. Korsak, N., Jacob, B., Groven, B., Etienne, G., China, B., Ghafir, Y. and Daube, G.: Salmonella contamination of pigs and pork in an integrated pig production system. J. Food Prot. 66, 1126-1133 (2003). https://doi.org/10.4315/0362-028X-66.7.1126
  9. Garland, J.B., Frye, J.G., Gray, J.T., Berrang, M.E., Harrison, M.A., Cray, P.J.F.: Transmission of Salmonella enterica serovar Typhimurium in poultry with and without antimicrobial selective pressure. J. Appl. Microbiol. 101, 1301-1308 (2006). https://doi.org/10.1111/j.1365-2672.2006.03036.x
  10. Sharan, R., Chhibber, S. and Reed, R.H.: A murine model to study the antibacterial effect of copper on infectivity of Salmonella Enterica Serovar Typhimurium. Int. J. Environ. Res. Public Health, 8, 21-36 (2011).
  11. Moreno, E., Cloechkaert, A. and Morivon, I.: Brucella evolution and taxonomy. Vet. Microbiol. 90, 209-227 (2002). https://doi.org/10.1016/S0378-1135(02)00210-9
  12. Cloeckaert, A., Grayon, M., Grepinet, O. and Bounedine, K.S.: Classification of Brucella strains isolated from marine mammals by infrequent restriction site-PCR and development of specific PCR identification tests. Microb. Infect. 5, 593-602 (2003). https://doi.org/10.1016/S1286-4579(03)00091-1
  13. Whitehead, R.N., Overton, T.W., Kemp, C.L. and Webber, M.A.: Exposure of Salmonella enteric Serovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step. PLoS ONE, 6, e22833 (2011). https://doi.org/10.1371/journal.pone.0022833
  14. Turkmani, A., Psaroulaki, A., Christidou, A., Samoilis, G., Mourad, T.A., Tabaa, D. and Tselentis, Y.: Uptake of ciprofloxacin and ofloxacin by 2 Brucella strains and their fluoroquinolone- resitant variants under different conditions. An in vitro study. Dign. Microbiol. Infect. Dis. 59, 447-451 (2007). https://doi.org/10.1016/j.diagmicrobio.2007.06.017
  15. Russell, A.D.: Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 3, 794-803 (2003). https://doi.org/10.1016/S1473-3099(03)00833-8
  16. Giammanco, G., Pignato, S. and Giammanco, G.M.: Recent trends in salmonellosis epidemiology. J. Prev. Med. Hyg. 40, 19-24 (1999).
  17. Munozdel, R.M., Montano, M.F., Renteria, T.B., Sanchez, E., Moreno, J.F., Perez, A. and Saucedo, S.: Assessment of the economic impact of a brucellosis control program in a dairy herd using the partial budget method. J. Anim. Vet. Adv. 6, 146-151 (2007).
  18. Mennerat, A., Nilsen, F., Ebert, D. and Skorping, A.: Intensive farming: Evolutionary implications for parasites and pathogens. Evol. Biol. 37, 59-67 (2010). https://doi.org/10.1007/s11692-010-9089-0
  19. Kahrs, R.F.: General disinfection guidelines. Rev. Sci. Tech. 14, 105-163 (1995). https://doi.org/10.20506/rst.14.1.836
  20. Ahmad, K.: Control of animal diseases caused by bacteria: Principles and approaches. Pakistan Vet. J. 25, 200-202 (2005).
  21. Shams, A.M., O'Connellm H,, Arduino, M.J. and Rose, L.J.: Chlorine dioxide inactivation of bacterial threat agents. Lett. Appl. Microbiol. 53, 225-230 (2011). https://doi.org/10.1111/j.1472-765X.2011.03095.x
  22. Lindstedt, M., Allenmark, S., Thompson, R.A. and Edebo, L.: Antimicrobial activity of betaine esters, quaternary ammoniumamphipheles which spontaneously hydrolyze into nontoxic components. Antimicrob. Agents Chemother. 34, 1949-1954 (1990). https://doi.org/10.1128/AAC.34.10.1949
  23. Gotvajn, A.Z. and Zagorc-Kon an, J.: Laboratory simulation of biodegradation of chemicals in surface waters: closed bottle and respirometric test. Chemosphere, 38, 1339-1346 (1999). https://doi.org/10.1016/S0045-6535(98)00535-9
  24. Chang, A.S. and Schneider, K.R.: Evaluation of overhead spray-applied sanitizers for the reduction of Salmonella on tomato surfaces. J. Food Sci. 71, M45-69 (2012).
  25. Kim, Y., Kim, M. and Son, K.B.: Combined treatment of fumaric acid with aqueous chlorine dioxide or UV-C irradiation to inactivate Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes inoculated on alfalfa and clover sprouts. Food Sci. Technol. 42, 1654-1658 (2009).
  26. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission: Treatment of poultry carcasses with chlorine dioxide, acidified sodium chlorite, trisodium phosphate and peroxyacids. EFSA J. 297, 1-27 (2005).
  27. Patrick, G.L.: An introduction to medicinal chemistry. In An antibacterial agents, Oxford University Press, Oxford, pp. 157-159 (1995).
  28. Filby, A., Shears, J., Drage, B., Churchley, J. and Tyler, C.: Effects of advanced treatments of wastewater effluents on estrogenic and reproductive health impacts in fish. Environ. Sci. Technol. 44, 4348-4354 (2010). https://doi.org/10.1021/es100602e
  29. Daniel, F.B., Condie, L.W., Robinson, M., Judy, A., York, R.G., Olson, G.R. and Wang, S.R.: Comparative subchronic toxicity studies of three disinfectants. J. Am. Water Works Assoc. 82, 61-69 (1990).
  30. Lubbers, J.R., Chauhan, S. and Bianchine, J.R.: Controlled clinical evaluations of chlorine dioxide, chlorite and chlorate in man. Fundam. Appl. Toxicol. 1, 334-338, 1981.
  31. Lubbers, J.R., Chauhan, S. and Bianchine, J.R.: Controlled clinical evaluations of chlorine dioxide, chlorite and chlorate in man. Environ. Health Perspect. 46, 57-62, (1982). https://doi.org/10.1289/ehp.824657
  32. Trinetta, V., Vaidya, N., Linton, R. and Morgan, M.: A comparative study on the effectiveness of chlorine dioxide gas, ozone gas and e-beam irradiation treatments for inactivation of pathogens inoculated onto tomato, cantaloupe and lettuce seeds. Int. J. Food Microbiol. 146, 203-206 (2011). https://doi.org/10.1016/j.ijfoodmicro.2011.02.014

Cited by

  1. Bactericidal Efficacies of an Aquatic Disinfectant Tablet Composed to Calcium Hypochlorite Against Vibrio anguillarum and Streptococcus iniae vol.27, pp.3, 2012, https://doi.org/10.13103/JFHS.2012.27.3.290
  2. Bactericidal Efficacy of a Disinfectant Solution Composed to Povidine-iodine Against Salmonella typhimurium and Brucella ovis vol.29, pp.3, 2014, https://doi.org/10.13103/JFHS.2014.29.3.165
  3. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0138491
  4. Bactericidal Efficacy of a Disinfectant Spray Containing a Grapefruit-seed Extract, Citric acid, Malic acid and Benzalkonium Chloride against Salmonella Typhimurium and Brucella ovis vol.31, pp.4, 2016, https://doi.org/10.13103/JFHS.2016.31.4.299