Neuroendocrine System in Seasonal Breeder: Focusing on the Reproductive Activity of Male Golden Hamster

  • Choi, Don-Chan (Dept. of Life Science, College of Environmental Sciences, Yong-In University) ;
  • Lee, Seung-Hoon (Dept. of Life Science, College of Environmental Sciences, Yong-In University)
  • Received : 2012.02.13
  • Accepted : 2012.03.08
  • Published : 2012.03.31

Abstract

The reproduction of animals is a way to maintain their species and demands a large amount of energy. The golden hamsters are seasonal breeders whose reproductive activities are regulated by photoperiod (length of day time in a day). The photic information received is transported to the pineal gland via many steps. Melatonin produced by the pineal gland affects the reproductive neuroendocrine system to manage reproductive activities. The major regulator neurons, secreting gonadotropin-releasing hormone, integrate all kinds of information to govern the reproductive frame hypothalamuspituitary-gonad axis. The elements impinging on the neurons are recently outspread. Thus the present review is to briefly survey the elements discovered newly and subjected to the active research realm and their correlations, focusing on the regulation of reproduction in mainly male golden hamsters as a representative animal.

Keywords

References

  1. Bittman EL, Bartness TJ, Goldman BD, DeVries GJ (1991) Suprachiasmatic and paraventricular control of photoperiodism in Siberian hamsters. Am J Physiol 260: R90-R101.
  2. Bliss SP, Navratil AM, Xie J, Roberson MS (2010) GnRH signaling, the gonadotrope and endocrine control of fertility. Neuroendocrinology 31:322-340. https://doi.org/10.1016/j.yfrne.2010.04.002
  3. Choi D (1996) Reproductive physiology of pineal hormone melatonin. Korean J Zool 39:337-351.
  4. Choi D (2001) Influence of melatonin on reproductive function in male golden hamsters. Dev Reprod 5:1-8.
  5. Ciccone N, Dunn IC, Boswell T, Tsutsui K, Ubuka T, Ukena K, Sharp PJ (2004) Gonadotrophin-inhibitory hormone depresses gonadotrophin alpha and folliclestimulating hormone beta subunit expression in the pituitary of the domestic chicken. J Neuroendocrinol 16:999-1006. https://doi.org/10.1111/j.1365-2826.2005.01260.x
  6. Clarke IJ, Smith JT, Caraty A, Goodman RL, Lehman MN (2009) Kisspeptin and seasonality in sheep. Peptides 30:154-163. https://doi.org/10.1016/j.peptides.2008.08.022
  7. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the Kiss-1 derived peptide receptor GPR54. Proc Natl Acad Sci USA 100:10972- 10976. https://doi.org/10.1073/pnas.1834399100
  8. Ebisawa T, Karne S, Lerner MR, Reppert SM (1994) Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci USA 91:6133-6137. https://doi.org/10.1073/pnas.91.13.6133
  9. Elliott JA (1976) Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc 35:2339-2346.
  10. Gaston S, Menaker M (1967) Photoperiodic control of hamster testis. Science 158:925-928. https://doi.org/10.1126/science.158.3803.925
  11. Gauer F, Masson-Pévet M, Skene DJ, Vivien-Roel B, Pévet P (1993) Daily rhythms of melatonin binding sites in the rat pars tuberalis and suprachiasmatic nuclei; Evidence for a regulation of melatonin receptor by melatonin itself. Neuroendocrinology 57:120-126. https://doi.org/10.1159/000126350
  12. Gottsch ML, Cunninggham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145: 4073-4077. https://doi.org/10.1210/en.2004-0431
  13. Grosse J, Maywood ES, Ebling FJP, Hastings MH (1993) Testicular regression in pinealectomized Syrian hamsters following infusions of melatonin delivered on noncircadian schedules. Biol Reprod 49:666-674. https://doi.org/10.1095/biolreprod49.4.666
  14. Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25:11349-11356. https://doi.org/10.1523/JNEUROSCI.3328-05.2005
  15. Hong SM, Stetson MH (1988) Termination of gonadal refractoriness in Turkish hamsters, Mesocricetus brandti. Biol Reprod 38:639-643. https://doi.org/10.1095/biolreprod38.3.639
  16. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA (2004) Kisspeptin activation of gonadotropin-releasing hormone neurons and regulation of Kiss-1 mRNA in the male rat. Neuroendocrinology 80:264-272. https://doi.org/10.1159/000083140
  17. Johnson MA, Tsutsui K, Fraley GS (2007) Rat RFamiderelated peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm Behav 51:171-180. https://doi.org/10.1016/j.yhbeh.2006.09.009
  18. Kim D-K, Cho EB, Moon MJ, Park S, Hwang J-I, Do Rego J-L, Vaudry H, Seong JY (2012) Molecular coevolution of neuropeptides gonadotropin-releasing hormone and kisspeptin with their cognate G proteincoupled receptors. Front Neurosci 6:1-8.
  19. Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) Kiss-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88:1731-1737. https://doi.org/10.1093/jnci/88.23.1731
  20. Lee SH, Choi D (2005) KiSS-1: A novel neuropeptide in mammalian reproductive system. Dev Reprod 9:1-5.
  21. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587.
  22. Matt KS, Stetson MH (1980) Comparison of serum hormone titers in golden hamsters during testicular growth induced by pinealectomy and photoperiodic stimulation. Biol Reprod 23:893-898. https://doi.org/10.1095/biolreprod23.4.893
  23. Maywood ES, Lindsay JO, Karp J, Power JB, Williams LM, Titchener L, Ebling FJP, Herbert J, Hasting MH (1991) Occlusion of the melatonin-free interval blocks the short day gonadal response of the male Syrian hamster to programmed melatonin infusions of necessary duration and amplitude. J Neuroendocrinol 3:331-337. https://doi.org/10.1111/j.1365-2826.1991.tb00283.x
  24. Oakley AE, Clifton DK, Steiner RA (2009) Kisspeptin signaling in the brain. Endocr Rev 30:713-743. https://doi.org/10.1210/er.2009-0005
  25. Osugi T, Ukena K, Bentley GE, O'Brien S, Moore IT, Wingfield JC, Tsutsui K (2004) Gonadotropin-inhibitory hormone in Gambel's white-crowned sparrows: cDNA identification, transcript localization and functional effects in laboratory and field experiments J Endocrinol 182:33- 42. https://doi.org/10.1677/joe.0.1820033
  26. Pickard GE, Silverman AJ (1979) Effects of photoperiod on hypothalamic luteinizing hormone releasing hormone in the male golden hamster. J Endocrinol 83:421-428. https://doi.org/10.1677/joe.0.0830421
  27. Reiter RJ (1980) Photoperiod: Its importance as an impeller of pineal and seasonal reproductive rhythms. Int J Biomet 24:57-63. https://doi.org/10.1007/BF02245542
  28. Revel FG, Saboureau M, Pevet P, Simonneaux V, Mikkelsen JD (2008) RFamide-related peptide gene is a melatonindriven photoperiodic gene. Endocrinology 149:902-912. https://doi.org/10.1210/en.2007-0848
  29. Richard N, Galmiche G, Corvaisier S, Caraty A, Kottler ML (2008) KiSS and GPR54 genes are coexpressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotropin-releasing hormone. J Neuroendocrinol 20:381-393. https://doi.org/10.1111/j.1365-2826.2008.01653.x
  30. Rizwan MZ, Porteous R, Herbison AE, Anderson GM (2009) Cells expressing RFamide-related peptide-1/3, the mammalian gonadotropin-inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat. Endocrinology 150:1413-1420. https://doi.org/10.1210/en.2008-1287
  31. Rollag MD, Panke ES, Trakulrungsi W, Trakulrungsi C, Reiter RJ (1980) Quantification of daily melatonin synthesis in the hamster pineal gland. Endocrinology 106:231-236. https://doi.org/10.1210/endo-106-1-231
  32. Roseboom PH, Coon SL, Baler R, McCune SK, Weller JL, Klein DC (1996) Melatonin synthesis: Analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology 137:3033-3044. https://doi.org/10.1210/en.137.7.3033
  33. Smith JT, Clarke IJ (2009) Gonadotropin inhibitory hormone function in mammals. Trends Endocrinol Metabol 21: 255-260.
  34. Steger RW, Matt K, Bartke A (1985) Neuroendocrine regulation of seasonal reproductive activity in the male golden hamster. Neurosci Biobehavi Rev 9:191-201. https://doi.org/10.1016/0149-7634(85)90045-4
  35. Stetson MH, Tay DE (1983) Time course of sensitivity of golden hamsters to melatonin injections throughout the day. Biol Reprod 29:432-438. https://doi.org/10.1095/biolreprod29.2.432
  36. Stetson MH, Watson-Whitmyre M (1986) Effects of exogenous and endogenous melatonin on gonadal function in hamsters. J Neural Transm 21(Suppl):55-80.
  37. Stetson MH, Watson-Whitmyre M, Matt KS (1977) Termination of photorefractoriness in golden hamsters-photoperiodic requirements. J Exp Zool 202:81-88. https://doi.org/10.1002/jez.1402020110
  38. Sugden D (1989) Melatonin biosysthesis in the mammalian pineal gland. Experientia 45:922-932. https://doi.org/10.1007/BF01953049
  39. Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC (2008) A GPR54-activating mutation in a patient with central precocious puberty. N Eng J Med 358:709-715. https://doi.org/10.1056/NEJMoa073443
  40. Tsutsui K, Bentley GE, Bedecarrats G, Osugi T, Ubuka T, Kriegsfeld LJ (2010) Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function. Front Neuroendocrinol 31:284-295. https://doi.org/10.1016/j.yfrne.2010.03.001
  41. Tsutsui K, Bentley GE, Ubuka T, Saigoh E, Yin H, Osugi T, Inoue K, Chowdhury VS, Ukena K, Ciccone N, Sharp PJ, Wingfield JC (2007) The general and comparative biology of gonadotropin-inhibitory hormone (GnIH). Gen Comp Endocrinol 153:365-370. https://doi.org/10.1016/j.ygcen.2006.10.005
  42. Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ (2000) A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 275:661-667. https://doi.org/10.1006/bbrc.2000.3350
  43. Ubuka T, Kim S, Huang Y, Reid J, Jiang J, Osugi T, Chowdhury VS, Tsutsui K, Bentley GE (2008) Gonadotropin- inhibitory hormone neurons interact directly with gonadotropin-releasing hormone-I and -II neurons in European starling brain. Endocrinology 149:268-278. https://doi.org/10.1210/en.2007-0983
  44. Ubuka T, Ukena K, Sharp PJ, Bentley GE, Tsutsui K (2006) Gonadotropin-inhibitory hormone inhibits gonadal development and maintenance by decreasing gonadotropin synthesis and release in mail quail. Endocrinology 147: 1187-1194. https://doi.org/10.1210/en.2005-1178
  45. Ukena K, Tsutsui K, Saigoh E (2001) Distributuion of novel RFamide-related peptide-like immunoreactivity in the mouse central nervous system. Neurosci Lett 300:153-156. https://doi.org/10.1016/S0304-3940(01)01583-X
  46. Yin H, Ukena K, Ubuka T, Tsutsui K (2005) A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japaneses quail (Coturnix japonica): Identification, expression and binding activity. J Endocrinol 184:257-266. https://doi.org/10.1677/joe.1.05926