DOI QR코드

DOI QR Code

Design of Serpentine Flow-field Stimulating Under-rib Convection for Improving the Water Discharge Performance in Polymer Electrolyte fuel cells

고분자전해질 연료전지의 물 배출 성능 향상을 위한 촉매층 공급 대류 촉진 사행성 유동장 설계

  • Choi, Kap-Seung (Industrial Technology Cooperation Center, Korea Institute of Energy Research) ;
  • Bae, Byeong-Cheol (Department of Mechanical and Automotive Engineering & High Safety Vehicle Core Technology Research Center, INJE University) ;
  • Park, Ki-Won (Department of Mechanical and Automotive Engineering & High Safety Vehicle Core Technology Research Center, INJE University) ;
  • Kim, Hyung-Man (Department of Mechanical and Automotive Engineering & High Safety Vehicle Core Technology Research Center, INJE University)
  • 최갑승 (한국에너지기술연구원 산업기술협력센터) ;
  • 배병철 (인제대학교 기계공학과 & 고안전차량 핵심기술연구소) ;
  • 박기원 (인제대학교 기계공학과 & 고안전차량 핵심기술연구소) ;
  • 김형만 (인제대학교 기계공학과 & 고안전차량 핵심기술연구소)
  • Received : 2012.02.21
  • Accepted : 2012.03.27
  • Published : 2012.05.31

Abstract

Proton exchange membrane fuel cell performance is changed by the complicated physical phenomenon. In this study, water discharge performance of proton exchange membrane fuel cell were performed numerically to compare serpentine channel flow fields of 5-pass 4-turn serpentine and 25 $cm^2$ reaction surface between with and without sub-channel at the rib. Through the supplement of sub channel flow field, it is shown from the results that water removal characteristic inside channel improves because the flow direction of under-rib convection is changed into the sub channel. Reacting gases supplied from entrance disperse into sub channel flow field and electrochemical reaction occurs uniformly over the reaction surface. The results obtained that total current density distributions become uniform because residence time of reacting gases traveling to sub-channel flow field is longer than to main channel.

고분자전해질 연료전지의 성능은 매우 복잡한 물리 현상들에 의해 변화하게 된다. 반응면적이 25 $cm^2$인 5-pass, 4-turn 사행성 유동유로의 립 부분에 보조유동유로를 가지는 형상에 대하여 물관리 측면에서의 연료전지 성능을 수치해석을 통해 비교하였다. 보조유동유로를 추가함에 따라 촉매층 공급 대류의 유동 방향이 변경되어 유로 내부의 물 배출 특성을 향상시키는 결과를 나타내었다. 또한 입구에서의 공급기체를 보조유동유로로 분산시킴에 따라 입구에서의 전류 밀도는 낮아지며 보조유동유로로 이동하는 공급기체들은 주 유동유로의 내에서의 체류시간보다 길어져서 전체적인 전류밀도 분포가 균일해지는 것을 확인하였다.

Keywords

References

  1. F. Barbir, 'PEM Fuel Cells: Theory and Practice', Elsevier Academic Press (2005).
  2. G. Marban and T. Valdes-Solis., 'Towards the hydrogen economy', Int. J. Hydrogen Energy, 32, 1625-1637 (2007). https://doi.org/10.1016/j.ijhydene.2006.12.017
  3. X. G. Li and I. Sabir., 'Review of bipolar plates in PEM fuel cells: Flow-field designs', Int. J. Hydrogen Energy, 30, 359-371 (2005). https://doi.org/10.1016/j.ijhydene.2004.09.019
  4. J. H. Nam, K. J Lee, S. Sohn, and C. H. Kim, 'Multi-pass serpentine flow-fields to enhance under-rib convection in polymer electrolyte membrane fuel cells: Design and geometrical characterization', J. Power Sources, 188, 14- 23 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.093
  5. M. V. Williams, H. R. Kunz, and J. M. Fenton., 'Operation of Nafion-based PEM fuel cells with no external humidification: influence of operating conditions and gas diffusion layers', J. Power Sources, 135, 122-134 (2004). https://doi.org/10.1016/j.jpowsour.2004.04.010
  6. J. Park, M. Matsubara, and X. Li., 'Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell', J. Power Sources, 173, 404-414 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.021
  7. S. Dutta, S. Shimpalee, and J. W. Van Zee., 'Numerical prediction of mass exchange between cathode and anode channels in a PEM fuel cell', Int. J. Heat Mass Transfer, 44, 2029-2042 (2001). https://doi.org/10.1016/S0017-9310(00)00257-X
  8. T. Kanezaki, X. Li, and J. J. Baschuk., 'Cross-leakage flow between adjacent flow channels in PEM fuel cells', J. Power Sources, 162, 415-425 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.023
  9. K. S. Choi, H. M. Kim, and S. M. Moon, 'Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC', Int. J. Hydrogen Energy, 36, 1613-1627 (2011). https://doi.org/10.1016/j.ijhydene.2010.10.073
  10. D. R. Lee, J. M. Bae, and D. Ahmed, 'Numerical study for the Effect of Inlet Humidity Condition at PEMFC Channel', Trans. of the KSME(B), 30(12), 1228-1235 (2006).
  11. S. Shimpalee, S. Greenway, and J W. Van Zee., 'The impact of channel path length on PEMFC flow-field design', J. Power Sources, 160, 398-406 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.099
  12. D. H. Jeon, S. Greenway, S. Shimpalee, and J. W. Van Zee., 'The Effect of Serpentine Flow-Field Designs on PEM Fuel Cell Performance', Int. J. Hydrogen Energy, 33, 1052-1066 (2008). https://doi.org/10.1016/j.ijhydene.2007.11.015
  13. F. N. Buchi and G. G. Scherer, 'Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells', J. Electrochem. Soc., 148, A181-188 (2000).
  14. S. Shimpalee and J. W. Van Zee., 'Numerical study on rib and channel dimension of flow-field on PEMFC performance', Int. J. Hydrogen Energy, 32, 842-856 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.032